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Abstract

The aim of the paper is to tackle two related questions: Is
it possible to reduce the foundations of logic to the mere concept
of incompatibility? and Does this reduction lead us to a specific
logical system? We conclude that the answers, respectively,
are YES and a qualified NO (qualified in the sense that basing
semantics on incompatibility does make some logical systems
more natural than others, but without ruling out the alterna-
tives.)

1 Can inference serve as a foundation of logic?

Can we base the whole of logic solely on the concept of incompati-
bility? My motivation for asking this is two-fold: firstly, a technical
interest in what a minimal foundations of logic might be; and sec-
ondly, the existence of philosophers who have taken incompatibility
as the ultimate key to human reason (viz., e.g., Hegel’s concept of
determinate negation). The main aim of this contribution is to tackle
two related questions: Is it possible to reduce the foundations of logic
to the mere concept of incompatibility? and Does this reduction lead
us to a specific logical system? We conclude that the answers, respec-
tively, are YES and a qualified NO (qualified in the sense that basing
semantics on incompatibility does make some logical systems more
natural than others, but without ruling out the alternatives.

A search for the bare bones of logic generally leads one to the rela-
tion of inference (or consequence). This way is explored meticulously
by Koslow (1992). He defines an implication structure as, in effect,
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an ordered pair 〈S,`〉, where S is a set and ` ⊆ Pow(S)× S fulfilling
certain (relatively simple) restrictions. And obviously if we reduce
incompatibility to inference, which is achievable by the well known ex
contradictione quodlibet principle, we reach a logic based on incom-
patibility. The kind of logic flowing most straightforwardly from this
setting is the intuitionist one.

However, there is also the approach taken by Brandom and Aker
(2008), who have set up a logic based directly on incompatibility.
They define an incompatibility structure as an ordered pair 〈S,⊥〉 such
that S is a set and ⊥ ⊆ Pow(S) (again fulfilling certain restrictions).
The authors introduce logical operators in such a way that they reach
classical logic.

Does this mean that inference ‘naturally’ leads to intuitionist logic,
whereas incompatibility leads to the classical one? Myself, I have
argued that it is indeed intuitionist logic that is the logic of inference
(see Peregrin, 2008). However, this should not be read as saying that
choosing inference as the fundamental logical notion predetermines us
to have intuitionist logic, and that choosing incompatibility as such
a notion perhaps predetermines us to have the classical one. I will
argue instead that we can use incompatibility to lay the foundation
of almost any imaginable kind of logic.

In what follows I first analyze the relationship between the two
above mentioned approaches to logic based upon incompatibility, and
the source of the difference between the ensuing logics; with the result
that the source of the difference is not the choice of the fundamental
notion itself, but rather certain collateral desiderata that Koslow, but
not Brandom and Aker, poses for his logical system. Then I indicate
that by generalizing the approach of Brandom and Aker, in a variety
of ways, we can also reach other kinds of non-classical logic.

2 The framework

A generalized inferential structure (gis) will be the ordered triple
〈S,⊥,`〉, where S is a set, ⊥ ⊆ Pow(S) and ` ⊆ Pow(S)× S. Which
constraints should be placed on the notions of incompatibility and
inference on this maximally general level? (It is clear that not any
kind of set of sets of sentences can be reasonably seen as instantiating
incompatibility, and that not every relation between sets of sentences
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and sentences can reasonably be called a relation of inference.)
Before introducing the constraints, a word about notation. The

variables X, Y , Z will range over subsets of S, whereas the variables
A, B, C will range over elements of S. ⊥ X will denote that X ∈ ⊥.
X ` A will denote that 〈X,A〉 ∈ `. We will write X,Y after ⊥ or
before ` as a shortcut for X∪Y , and A as a shortcut for {A }. Hence,
e.g. ⊥ X,A expands to X∪{A } ∈ ⊥. Now we can list the constraints
we consider basic:

(⊥) for every X, Y : if ⊥ X and X ⊆ Y , then ⊥ Y

(`1) for every X, A: X,A ` A

(`2) for every X, Y , A, B: if X,A ` B and Y ` A, then X,Y ` B

Let us adopt a further notational convention. Symbols that appear
as “free” in the conditions of the above kind will be understood as
universally quantified. Given this convention, we can shorten the
above conditions to:

(⊥) if ⊥ X and X ⊆ Y , then ⊥ Y

(`1) A,X ` A

(`2) if X,A ` B and Y ` A, then X,Y ` B

(⊥) states that an incompatible set of sentences cannot be turned
into a compatible one by addition of further sentences. This is the
single constraint stipulated by Brandom and Aker. (`1) states that if
A belongs to X, then it is entailed by X. (`2) says that the relation
of consequence is transitive (if X entails every element of a set that
entails A, then X entails A). The constraints (`1) and (`2) are
stipulated by Koslow; they are tantamount to the so-called Gentzenian
structural rules.1

It is sometimes useful to replace (`1) by two other conditions:

1Gentzen (1934, 1935) introduced structural rules with which to characterize
those relations of inference that he took to be ‘standard’. In a slightly more
contemporary manner, they can be summarized as follows:

A ` A (reflectivity)

if X,Y ` A, then X,B, Y ` A (weakening or extension)

if X,A,A, Y ` B, then X,A, Y ` B (contraction)

if X,A,B, Y ` C, then X,B,A, Y ` C (permutation or exchange)
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Lemma 1 Let 〈S,⊥,`〉 be a gis for which (`2) holds. Then (`1)
holds if and only if (`1.1) and (`1.2) hold:

(`1.1) A ` A;

(`1.2) if X ` A, then X,B ` A.

Proof. That (`1) follows from (`1.1) and (`1.2) is obvious; con-
versely it is obvious that (`1.1) follows from (`1); so the only thing
to show is that (`1.2) follows from (`1). Assume X ` A. As X,B
entails all elements of X, X,B ` A is yielded by the repeated appli-
cation of (`2).

We may further consider constraints on the interplay of ` and ⊥.
The most natural ones seem to be the following two:

(⊥`1) if ⊥ X, then X ` A

( ⊥̀1) if X ` A and ⊥ Y,A, then ⊥ Y,X

The first says that an incompatible set entails everything (a version
of the famous ex falso quodlibet, or, perhaps better, ex contradictione
quodlibet); the second says that whatever is compatible with the an-
tecedent of a consequence, cannot be incompatible with its consequent
(Brandom and Aker call this condition—more precisely an equivalent
one—defeasibility).

Adopting either of these conditions together with its converse al-
lows us to reduce one of the two basic concepts to the other:

(⊥`2) if X ` A for every A, then ⊥ X

( ⊥̀2) if ⊥ Y,A implies ⊥ Y,X for every Y , then X ` A

Thus, adopting (⊥`1) plus (⊥`2) is tantamount to reducing ⊥ to
`, as treating a set of sentences as incompatible just in the case that
it entails everything. From the other side, adopting ( ⊥̀1) plus ( ⊥̀2)
is tantamount to reducing ` to ⊥, as treating a sentence as inferable

if X,A, Y ` B and Z ` A, then X,Z, Y ` B (cut)

Within our framework, two of the conditions, namely contraction and permutation,
are implicit to the assumption that inference is a relation between sets (rather than
sequences) of sentences and sentences.
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from a set of sentences just in the case that whatever is incompatible
with the consequent is incompatible with its antecedent.

Let us call a gis standard iff it complies with (`1), (`2), (⊥),
( ⊥̀1), ( ⊥̀2), (⊥`1), and (⊥`2). Some of these constraints turn out
to be superfluous.

Lemma 2 Let 〈S,⊥,`〉 be a gis for which (⊥`1), (⊥`2), (`2), and
( ⊥̀2) hold. Then ( ⊥̀1) holds.

Proof. Assume that X ` A and ⊥ Y,A. Given (⊥`1), it follows
Y,A ` B for every B. Given (`2) we get Y,X ` B for every B, and
finally using (⊥`2), we reach ⊥ Y,X.

The situation is similar with (⊥`1):

Lemma 3 Let 〈S,⊥,`〉 be a gis for which (⊥) and ( ⊥̀2) hold. Then
(⊥`1) holds.

Proof. Assume that ⊥ X. It follows from (⊥) that ⊥ X,Y for every
Y , hence it holds trivially that for every Y,A, if ⊥ Y,A, then ⊥ Y,X.
Given ( ⊥̀2), X ` A.

Corollary 4 Let 〈S,⊥,`〉 be a gis for which (⊥), (⊥`2), (`2), and
( ⊥̀2) hold. Then both ( ⊥̀1) and (⊥`1) hold.

Corollary 5 〈S,⊥,`〉 is standard iff it complies with (`1), (`2),
(⊥), ( ⊥̀2), and (⊥`2).

Lemma 6 Let 〈S,⊥,`〉 be a gis for which ( ⊥̀1) and ( ⊥̀2) hold.
Then (`1.1) and (`2) hold; and (`1.2) holds if (⊥) holds.

Proof. As ⊥ Y,A trivially implies ⊥ Y,A for every Y and A, (`1.1)
holds for every A. To show that (`2) holds, assume that X,A ` B
and Y ` A. In force of ( ⊥̀1), ⊥ Z,B implies ⊥ Z,X,A for every Z
and ⊥ Z,A implies ⊥ Z, Y for every Z, hence especially ⊥ Z,X,A
implies ⊥ Z,X, Y for every Z; and thus ⊥ Z,B implies ⊥ Z,X, Y for
every Z. Hence, in force of ( ⊥̀2), X,Y ` B. Now assume that (⊥)
holds and that X ` A. According to ( ⊥̀1), ⊥ Z,A implies ⊥ Z,X
for every Z, and hence it also implies ⊥ Z,X,B for every Z. Hence
X,B ` A.

Lemma 7 Let 〈S,⊥,`〉 be a gis for which (⊥`1) and (⊥`2) hold.
Then (⊥) holds if (`1.2) holds.
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Proof. Assume (`1.2) and assume ⊥ X and X ⊆ Y . Then, according
to (⊥`1), X ` A for every A, and hence, according to (`1.2), Y ` A
for every A. Hence according to (⊥`2), ⊥ Y .

Corollary 8 Let 〈S,⊥,`〉 be a gis for which (⊥`1), (⊥`2), ( ⊥̀1),
( ⊥̀2) hold. Then (⊥) holds iff (`1.2) holds.

Given a gis, we can also define a new variant of incompatibility in
terms of inference; and a new variant of inference in terms of incom-
patibility:

MX =Def. for every A,X ` A

X B A =Def. for every Y, if ⊥ Y,A then ⊥ Y,X

For a general gis, there is, of course, no guarantee that these new
versions will coincide (or even be similar to) the original ones. How-
ever, suppose that the ` which serves as the basis for the definition of
M is already reducible to the original ⊥—hence suppose that ( ⊥̀1)
and ( ⊥̀2) hold. Then the definition of M in terms of ` as if ‘undoes’
the definition of `; and the two pairs of operators coincide.

This means that given ( ⊥̀1) and ( ⊥̀2), M (trivially) coincides
with ⊥; and analogously for B and `. Combining this trivial result
with the claim of Corollary 4, we get:

Theorem 92 Let 〈S,⊥,`〉 be a gis for which (⊥), (⊥`2), (`2), and
( ⊥̀2) hold. Let M and B be defined as above. Then M coincides with
⊥ and B coincides with `.

In this case we can say that ⊥ and ` ‘fit together’ in the sense that
one can be reconstructed from the other.

3 Incompatibility vs. inference

Let us now turn our attention to logical operators; we will restrict
ourselves just to two of them, namely negation and conjunction.

It seems that the minimal requirements that must be put on nega-
tion are the following:

2Half of this theorem was proved by Brandom and Aker under the name of the
Representation theorem (of consequence relations by incompatibility relations).
What they proved was that B coincides with `, given (`2) and ( ⊥̀2), which they
call, respectively, general transitivity and defeasibility.
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(¬K1) ⊥ A,¬A

(¬K2) if ⊥ A,B, then B ` ¬A

These constraints stipulate that negation of A is its minimal in-
compatible: (¬1) states that ¬A is incompatible with A, whereas (¬2)
states that any other sentence incompatible with A is inferable from
B. If we reduce incompatibility to inference, i.e. accept (⊥`1) and
(⊥`2), we get:

(¬K1′) A,¬A ` B

(¬K2′) if A,B ` C for every C, then B ` ¬A

This gives us a natural characterization of negation in terms of
inference. The consequences of this stipulation were investigated by
Koslow; it leads to the intuitionist kind of negation.

Let us now consider a slight generalization of Koslow’s definition
more suitable for our purposes (the first condition stays the same):

(¬1) ⊥ A,¬A

(¬2) if ⊥ A,X, then X ` ¬A

In his exposition of the character of physical laws, Feynman (1985)
indicates how physical laws can be brought to the common denomi-
nator of a minimum principle; and the Koslowian approach to logic
can be seen as the way of reducing logical operators (and the laws
governing them) to a similar common denominator: all of them mark
minima and maxima of functions defined in terms of inference. (This
is not Koslow’s invention, it goes back to Hertz and Gentzen, but
Koslow has treated it more systematically.) However, if we now aban-
don this program and simply seek for any reasonable assortment of
rules constitutive of negation in terms of inference (plus possibly in-
compatibility), we can think about a constraint that is dual to (¬2′):

(¬3) if ⊥ ¬A,X, then X ` A

This constraint stipulates that the negation of A is a sentence
whose minimal incompatible is A. It is important that this stipulation
entails the law of double negation, which distinguishes classical from
intuitionist logic.
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Lemma 10 Let 〈S,⊥,`〉 be a gis for which (¬1) and (¬3) hold.
Then ¬¬A ` A for every A.

Proof. According to (¬3) it is the case that if ¬A ⊥ ¬¬A, then ¬¬A `
A; and ¬A ⊥ ¬¬A is an instance of (¬1).

Brandom and Aker’s definition of negation in terms of incompati-
bility is the following:

(¬B1) if ⊥ X,¬A, then X ` A;

(¬B2) if X ` A, then ⊥ X,¬A,

where ` serves as a shortcut for “for every Y ⊆ S, if ⊥ Y,A, then
⊥ Y,X”; in other words we assume ( ⊥̀1) and ( ⊥̀2). What is the
relationship between this definition and the above one? The answer
is provided by the following two theorems:

Theorem 11 Let 〈S,⊥,`〉 be a gis for which ( ⊥̀1), (¬1), and (¬3)
hold. Then (¬B1) and (¬B2) hold.

Proof. As (¬B1) coincides with (¬3), the only thing to prove is (¬B2).
Hence assume X ` A. Then, according to ( ⊥̀1), it is the case that
for every Y it holds that if ⊥ Y,A, then ⊥ Y,X. Hence especially if
⊥ ¬A,A, then ⊥ ¬A,X. Hence given (¬1), we have ⊥ ¬A,X.

Theorem 12 Let 〈S,⊥,`〉 be a gis for which (`1), (⊥1), (⊥`1),
(⊥`2), (¬B1) and (¬B2) hold. Then also (¬1), (¬2), and (¬3) hold.

Proof. We have already noted that (¬3) coincides with (¬B1); and
as (`1) implies A ` A, (¬B2) yields us (¬1); hence the only thing to
prove is (¬2). To prove it, assume that ⊥ A,B and further assume
that ⊥ Y,¬A. Then, in force of (⊥1), ⊥ A,B, Y , and, in force of
(¬B1), Y ` A. Thus, in force of ( ⊥̀1), ⊥ Y,B, Y , i.e. ⊥ Y,B. Hence
for any arbitrary Y , if ⊥ Y,¬A, then ⊥ Y,B, which yields X ` ¬A
via ( ⊥̀1).

It follows that in a standard gis, (¬B1) and (¬B2) are equivalent
to (¬1), (¬2) and (¬3). Hence the fact that Koslow’s approach leads
to intuitionist negation, whereas Brandom’s leads to the classical one,
does not mirror any inherent difference between inference and incom-
patibility; the two approaches diverge because Koslow (like Gentzen)
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lays down specific constraints on how a feasible inferential definition
of a logical constant ought to look, and that these constraints are
fulfilled by (¬1) plus (¬2), not, however, by (¬1), (¬2) and (¬3).

Now let us turn our attention to conjunction. Koslow’s way of
introducing it is as the upper bound (or supremum, if you prefer):

(∧K1) A ∧B ` A

(∧K2) A ∧B ` B

(∧K3) if X ` A and X ` B, then X ` A ∧B

Lemma 13 Let 〈S,⊥,`〉 be a gis for which (∧K1), (∧K2), (`1),
(`2) hold. Then (∧K3) is equivalent to

(∧K3′) A,B ` A ∧B.

Proof. Assume (∧K3). As (`1) yields us A,B ` A and A,B ` B, we
get A,B ` A∧B by means of (`2). Now assume (∧K3′) and assume
X ` A and X ` B. We get (∧K3) by means of (`2).

Brandom and Aker’s definition of conjunction is the following:

(∧B1) if ⊥ X,A ∧B, then ⊥ X,A,B

(∧B2) if ⊥ X,A,B, then ⊥ X,A ∧B

Theorem 14 Let 〈S,⊥,`〉 be a gis for which (∧K1), (∧K2), (∧K3),
and ( ⊥̀1) hold. Then (∧B1) and (∧B2) hold.

Proof. To prove (∧B1), assume X ⊥ A ∧ B. We obtain ⊥ X,A,B
by means of ( ⊥̀1) and (∧K3). To prove (∧B2), assume ⊥ X,A,B.
Using ( ⊥̀1) and (∧K1) we obtain ⊥ X,B,A ∧ B; and using ( ⊥̀1)
and (∧K2) we further obtain ⊥ X,A∧B,A∧B; hence ⊥ X,A∧B.

Theorem 15 Let 〈S,⊥,`〉 be a gis for which (∧B1), (∧B2), (⊥1),
( ⊥̀2) hold. Then (∧K1), (∧K2), and (∧K3) hold.

Proof. To prove (∧K1), assume⊥ X,A. Using (⊥1) we get⊥ X,A,B.
(∧B2) then yields us ⊥ X,A∧B. Hence if ⊥ X,A, then ⊥ X,A∧B;
and using ( ⊥̀2) we get (∧K1). The proof of (∧K2) is straightfor-
wardly analogous. To prove (∧K3), assume ⊥ X,A ∧ B. With the
help of (∧B1) we obtain ⊥ X,A,B. Now we get A,B ` A ∧ B using
( ⊥̀2).
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This ultimately clarifies the relationship between Koslow’s inferen-
tial logic and Brandom and Aker’s incompatibility logic, and explains
why the former leads to the intuitionist, while the latter to classical
logic. The distinctness of the outcomes do not stem from any inher-
ent differences between inference and incompatibility (indeed the two
concepts are two sides of the same coin); rather, it stems from the
discipline that Koslow, in contrast to Brandom and Aker, adds to his
inferential foundations.

4 Beyond classical and intuitionist logic

We have seen that basing logic on incompatibility and/or inference
naturally leads us to either classical, or intuitionist logic. Is it possible
to conceive of basing other kinds of logic, such as relevant logic or
modal logic, on incompatibility and/or inference? The case of relevant
logic is straightforward: we know that to be able to introduce it, we
need first to eliminate:

(`1.2) if X ` A, then X,B ` A,

which, as we saw in Corollary 8, is equivalent to (⊥). Hence all it
takes to prepare the ground for the relevantist version of logic within
the framework of incompatibility logic is to retract (⊥).

To accommodate other kinds of substructural logics, such as linear
logic, we must interfere deeper with our foundations. It is well known
that linear logic requires us to see inference as a relation not between
subsets of S and elements of S, but rather between multisets of the
elements of S and elements of S, which allows us to discard the struc-
tural rule of contraction. And we can go further and replace multisets
with sequences, which gives us the opportunity to discard permuta-
tion, thus allowing for logics for which the order of premises—and, as
the case may be, conclusions—is significant, e.g. some dynamic logics.
The situation is much the same as for incompatibility logic: to make
room for linear logic we must consider incompatibility not as a prop-
erty of sets, but rather of multisets (so that, for example, the multiset
{A,A,B } may be inconsistent though {A,B } is consistent; or vice
versa) and we might further consider it as a property of sequences.

Of course, there is a conceptual question concerning the extent
to which it makes sense to consider incompatibility as a property
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of sequences of sentences rather than its sets (just as there is the
conceptual question of how far it makes sense to consider inference
as a relation between sequences of sentences, rather than between
sets of sentences and sentences). But at least some reasons appear
to be available: we know, for example, that a collection of sentences
presented in one order may make up a consistent story, whereas the
same sentences in a different order may not.

How is it with modal logic? Brandom and Aker introduced a
natural definition of the necessity operator based on incompatibility:

(�) ⊥ X,�A iff ⊥ X or there is an Y such that not ⊥ X,Y and
not Y ` A.

They show that this definition of incompatibility leads to the sim-
plest modal logic S5. Can we have different modal logics based on
incompatibility? In principle, surely we can, provided that we add
some surplus ingredient corresponding to the relation of equivalence
on Kripkean models. Elsewhere (see Peregrin, 2010) I have shown
how we may reach logic B in this way.

5 Conclusion

It is possible to base logic solely on the concept of incompatibility; and
in fact it does not restrict us in any substantial way w.r.t. the kind of
logic we want to have. Brandom and Aker’s elegant way of establishing
it leads us to classical logic and further possibly to S5. (In contrast
to logic based on inference that appears to naturally yield intuitionist
logic.) In this sense, these logics may appear to be “natural” from
the viewpoint of incompatibility logic; however, if naturalness is not
what we are after, nothing prevents us from erecting almost any kind
of logic on incompatibility foundations.
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