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1. First-Order Predicate Calculus 
 
Formal languages, which are the medium of modern formal logic, have reached their definitive form 
during the first part of this century. The most substantial of them, the language of predicate 
calculus, is characterized by three types of syntactic rules. Two of these rules reflect, quite 
straightforwardly, basic syntactic structures of natural language: (i) the fact that an elementary 
natural language sentence typically consists of a verbal phrase complemented by several 
nominal phrases, and (ii) the fact, that sentences can be negated and joined into more complex 
sentences by means of certain connectives. Hence the rules 
 
 (i): An n-ary predicate plus n terms yield an (elementary) statement.  
 (ii) An n-ary logical operator plus n statements yield a statement. 
 
The third kind of rule is of a different sort: it reflects no such general syntactic structure of 
natural language, but rather the structure of certain specific judgments which we can make 
about language. If we turn an expression into a „matrix“ (a general scheme) by substituting 
variables - in the role of gap-markers - for some of its parts, we can then imagine the gaps filled 
with various concrete things (and the matrix thus being turned back into a statement) and 
scrutinize in which cases the resulting statement holds, and in which it does not not. On the 
basis of such observations we formulate judgments such as „the matrix M yields a true 
statement independently of whatever we fill its gaps“ and „the gaps in M can be filled by 
something to yield a true statement“; or simply  „for every x, N“ and „for some x, M“2. This 
leads to an intuition (which is, in contrast to the previous two, very specific), that a statement 
might consist of a quantifier (stating whether we are talking about all possibilities, about the 
existence of at least one possibility, or, as the case may be, about some other pattern of existence 
of possibilities), a variable (stating which kind of gap the assertion is about), and a matrix: 
 
 (iii) A quantifier plus a variable plus a statement yield a statement (where we suppose 
that a variable is also a term and hence can enter the rule (i)). 
 
This last intuition, however, has not always been understood and explicated quite uniformly: 
differences have occurred especially in whether variables can legitimately replace only terms, or 
also other kinds of expressions, particularly predicates. This ambiguity lead to the constitution 
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of first-order predicate logic as a self-contained subsystem of general predicate logic3. The first-
order paradigm means not only that we have no other variables than those substitutable for 
terms, but also that we cannot have a mechanism which would allow for a higher-order 
quantification in an indirect way.4 Due to all the nice properties of this subsystem 
(completeness, compactness, Löwenheim-Skolem property), many logicians are convinced, that 
logic should concentrate on this system alone. 
 Besides the exponents of first-order logic, however, there are also many logicians 
regarding this as too restrictive. Such voices are heard not only from the camp of those 
involving themselves with the analysis of natural language (and thus requiring a far richer 
repertoire of syntactic means than can be offered by the first-order predicate calculus), but also 
from among those who are concerned with the foundations of mathematics (Barwise a 
Feferman, 1985; Shapiro, 1991). Unfortunately it seems that many discussions around this 
theme suffer both from the fact that their participants sometimes fail to acknowledge all the 
facts about the relationship between first-order and higher-order logic, and also from the fact 
that terms like higher-order logic are employed in various different senses. 
 The aim of this contribution is to clarify what is, and what is not, a legitimate subject to 
such discussions: it thus presents nothing essentially new, but it assembles some available 
relevant facts in a way which the author finds useful and which he has found lacking in the 
current literature. 
 
 
 
2. Beyond the border of first-order logic 
 
When you ask someone why she needs a logic of an order higher than one, why she cannot 
make do with first-order logic, she is likely to respond that she needs a higher expressive power, 
than first order-logic can offer. However, this may be ambiguous. It may be interpreted as 
expressing (i) the need of a syntactically richer language; which can, in turn, represent either (i.i) 
the simple need of higher-order predicates; or (i.ii) the need to quantify over the corresponding 
variables. However, the response might also be interpreted amounting to (ii) the need of a logic 
which would allow us to articulate some of the concepts which are not expressible within first-
order logic, e.g. the concept of finiteness. These motifs, however interconnected they may be, 
cannot be identified. Let us discuss them in greater detail. 
 The need (i.i) may be motivated by an effort to apply a straightforward logical analysis 
to natural language statements like (1) or (2); the difficulty being that in order to form the 
formula (1'), we need the second-order predicate La, and in order to form (2'), we need the 
‘predicate’ Qu, whose application to a predicate yields again a predicate. 
 
 To be brave is laudable (1) 
                                                 
     3See Moore (1988). 
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logic. (In fact, it was also one of the reasons why Frege’s system was contradictory, as pointed out by 
Russell.). 



 

 Charles runs quickly (2) 
 La(Br) (1') 
 (Qu(Ru))(Ch) (2') 
 
Similarly we may want to capture some mathematical concepts by means of second-order 
predicates; we may, e.g., want to regiment (3) as (3'), where Pr is a unary predicate.  
 
 There are infinitely many primes (3) 
 Inf(Pr) (3') 
 
 The need (i.ii) may be motivated by the effort of capturing the statements like (4) and (5) 
as something like (4') and (5'): 
 
 Charles and Peter share a property (4) 
 To do something quickly is not to do it slowly (5) 
 ∃∃∃∃ p.p(Ch)&p(Pe) (4') 
 ∀∀∀∀ p∀∀∀∀ x.(Qu(p))(x)→→→→¬(Sl(p))(x) (5') 
 
 Similarly, the Dedekind definition of an infinite range, (6), can be straightforwardly 
regimented as (6'), while the axiom of induction, (7), as (7'). 
 
 The range P is infinite, if it can be injectively mapped on its proper subset. (6) 
 Inf(P)≡∃≡∃≡∃≡∃ f.∀∀∀∀ x∀∀∀∀ y(fx=fy→→→→x=y)&∀∀∀∀ x(P(x)→→→→P(fx))&∃∃∃∃ y(P(y)&∀∀∀∀ x(P(x)→→→→fx≠y)) (6') 
 If 0 has a property, and if, moreover, a successor n' of every number n has the property 

if n has the property, then every number has the property. (7) 
 ∀∀∀∀ p.(p(0)&∀∀∀∀ n(p(n)→→→→p(n')))→∀→∀→∀→∀ n.p(n) (7') 
 
 In contradistinction, the need (ii) then can be motivated simply by the desire for a logic 
in which it would be possible to express concepts which are arguably not expressible within 
first-order logic (infinity, for instance), but not necessarily by means of an explicit definition in 
the object language (such as (6')). If we accept the model-theoretic notion of logic (viz. Barwise 
& Feferman, 1985), we can legitimately define, for example, the quantifier ∃∃∃∃ ∞∞∞∞ by the following 
metalinguistic prescription (where ║...║[x←d] is that interpretation which differs from ║...║ at 
most in that ║x║[x←d]=d): 
 
 ║∃∃∃∃ ∞∞∞∞xP(x)║ = 1 iff there is an infinite number of such objects d that ║P(x)║[x←d] = 1  
 
 Such a definition does not necessarily carry us over the borders of the syntax of first-
order logic - ∃∃∃∃ ∞∞∞∞ is an expression of the very same syntactic category as ∃∃∃∃  and ∀∀∀∀ , and to 
introduce new expressions of this category does not cause any paramount problems for the first-
order framework (viz. ∃∃∃∃ !). 
 This indicates that (i) and (ii), however interconnected, differ substantially in character. 
In the case of (i) the requirement is a larger repertoire of syntactic means, which alone need not 
involve any nontrivial step beyond the boundaries of first-order logic. For there is a strategy for 
both directly "emulating" such means within the framework of first-order logic, or alternatively 
for extending the language of first-order logic so as to bring us the needed syntactic means 



 

without crossing the boundaries of first-order logic. Let me now sketch two variants of the 
strategy for reducing higher-order quantification to first-order one. 
 
 
 
3. Predicates as individuals 
 
The first of the variants stems from the conviction that a subject of predication is always 
necessarily an individual. Frege (1892, s.197) says: "[der Begriff] kann wegen seiner 
prädikativen Natur nicht ohne weiteres [als Bedeutung des grammatischen Subjekts] erscheinen, 
sondern muβ erst in einen Gegenstand verwandelt werden, oder, genauer gesprochen, er muβ 
durch einen Gegenstand vertreten werden." This means that what we may see as a property of 
properties applied to a property should be viewed as a property of individuals applied not to a 
property, but rather to some kind of its "objectual correlate" (its extension, within Frege’s 
framework). In natural language the situation is indeed such that a predicate can be conjoined 
only with a nominal form (nominalization) of another predicate (typically a verbal noun, an 
infinitive, or a gerund). This consideration leads to the situation that, for example, the statement 
(1) is regimented as the application of the predicate La to the term BBr, which denotes the 
„objectual correlate“ of the predicate Br. 
 Obviously, however, the systematic relationship between predicates and their objectual 
correlates is logically significant: the inference such as (8) is generally valid.  
 
 Charles is brave (8) 
 To be brave is laudable 
 ──────────────── 
 hence Charles has a laudable property 
 
Such inferences are nevertheless easy to render: it is only necessary to take the predicate to have 
a property seriously (to regiment it as a binary predicate constant), and further to understand 
BBr not as a primitive term, but rather as a „nominalizing“ operator B applied to the predicate 
Br - i.e. to understand BBr as B(Br). Then we can articulate the general inference rule 
 
 P(T)  (9) 
 ──────── 
 hence HasPr(T,B(P)); 
 
and regiment the inference (8) with its help: 
 
 Br(Ch) (8') 
 La(B(Br)) 
 ───────────── 
 hence HasPr(Ch,B(Br))&La(B(Br)) 
 and hence ∃∃∃∃ x.HasPr(Ch,x)&La(x) 
 
An operator such as B cannot, of course, be squeezed directly into the first-order framework; but 
nevertheless its introduction requisites a modification of the framework other than the 
introduction of higher-order predicates. Problems connected with operators of this kind, and, 



 

more generally, problems concomitant with logical analysis of the phenomenon of 
nominalization in natural language are discussed in detail by Chierchia (1982) and 
Turner (1983).5 
 A variation on the same theme is the Davidsonian approach to the regimentation of 
sentences of type (2): Davidson (1980) proposes to enrich each predicate by a new, in natural 
language covert, argument place, fillable with something like „events“: the statement (2) will 
thus be understood as There is an "event of running" the agent of which is Charles and this 
event is quick (see also Parsons, 1990). 
 
 ∃∃∃∃ e.Ru(e,Ch)&Qu(e). (2'') 
 
 In a certain sense, both model theory and set theory can be seen as general expressions 
of this strategy: a model-theoretic interpretation of a formal language can be seen as a sort of a 
translation of this language into the language of set theory - hence into a first-order language.6 
For the usual model theory can be seen as - in effect - a means of translating, e.g., the statement 
P(T) into the "metastatement" ║T║∈∈∈∈ ║P║ (similarly, with some insubstantial complications, for 
predicates of higher arities); and hence the reduction of the truth of the former to the truth of the 
latter - if we understand ║...║ simply as a nominalizing device (so that ║T║=T, for T is nominal 
in itself, and ║P║=B(P)), and if we write HasPr instead of ∈∈∈∈ , we turn ║T║∈∈∈∈ ║P║ into our 
familiar HasPr(T,B(P)).7  
 
 
 
4. Henkinian Understanding of Higher-Order Logics 
 
The second variant of this strategy is based on the idea of accepting the syntactic means of 
higher-order logics without any limitations, but semantically interpreting them in the spirit of 
first-order logic; i.e. taking them as mere ‘notational variants’ of first-order means. If we 
concentrate on second-order logic, this strategy amounts, informally speaking, to taking 
relations as a peculiar kind of individuals (the relations will hence be elements of the domain of 
individuals). This causes the expression P(T) to be seen as expressing a relation between two 
individuals: the relation-taken-as-individual ║P║ and the ("classical") individual ║T║. In this 
way, quantification over relations becomes quantification over a certain kind of individuals. 
 The interpretation of a second-order language consists of a universe U and an 
interpretation function which maps individual constants on the elements of U and predicate 
constants on the relations over U; the range of the individual variables is then U and the ranges 
of predicate variables are the corresponding sets of relations (subsets of Cartesian powers of U). 
Hence the difference between a first-order interpretation and a second-order one is that the latter 
works not only with the range U, but also with the ranges Pow(U), Pow(U2), ... . Nevertheless, 
multiple ranges can also be readily accommodated even within first-order semantics: directly 
within sorted first-order logic (which is a straightforward and formally unproblematic variety of 
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standard first-order logic, in which we have terms of multiple categories and hence multiple 
universes of individuals, or multiple compartments of the single universe), and indirectly even 
within standard (unsorted) first-order logic; the idea is that of „modeling“ the various ranges as 
various parts of the single universe. This can be done in such a way that the quantification over 
a specific range is replaced by the quantification over the whole universe, but each quantified 
formula is interpreted as a conditional whose antecedent restricts the quantification to that part 
of the universe which models the range in question: ∀∀∀∀ p.p(x) is thus interpreted as 
∀∀∀∀ y.P(y)→→→→PR(y,x), where P is the characteristic function of that part of the universe which 
models the range of unary predicate variables, and PR is the binary predicate which renders 
predication as the relation between a pair of individuals. 
 Each second-order interpretation thus straightforwardly „induces“ a certain first-order 
interpretation, and the relation between the inducing and the induced preserves satisfiability. We 
may single out a certain class of first-order interpretations which are of the kind of those 
induced by second-order interpretations and call them quasisecond-order interpretations. Such 
a class can be characterized by a certain first-order theory; however, doing this suscitates the 
problem that although each second-order interpretation induces a quasisecond-order 
interpretation, not every quasisecond-order interpretation is induced by a second-order 
interpretation. Hence there will be no guarantee that each formula valid under every second-
order interpretation will be valid also under every quasisecond-order interpretation; and Gödel’s 
theorem implies that there will indeed be formulas, which are second-order valid, but not 
quasisecond-order valid. 
 It is interesting that instead of interpreting second-order logic in the first-order way we 
can equally accept second-order interpretations in which the ranges of the predicate variables 
need not necessarily contain all the relations of the corresponding arities. The point is that it can 
be easily proved that there is a one-to-one correspondence between these so-called Henkinian 
interpretations8 and quasisecond-order interpretations. 
 It is also worth noting that the difference between this kind of „reducing“ second-order 
logic to the first-order one, and the procedure discussed in the previous section is in fact only an 
„ideological“ one: while in the previous case we first translated the second-order language into a 
first-order language which we then interpret in the normal way, in the present case these two 
steps get mingled together: second-order logic is directly interpreted in the first-order way, and 
there is no intervening first-order language. (Neither do we introduce the problematical 
nominalization operator of the kind of B of the previous section.) In the previous section we 
said that we first „translate“ predicate into terms and then interpreted these by individuals; now 
we say that we interpret predicates directly by individuals - the difference is obviously not 
substantial. 
 
 
 
5. The Principles Of Second-to-First-Order Translation 
 
Let us analyze more closely how higher-order logic is reduced to lower-order logic - we sketch 
an algorithm for transforming any second-order language into a first-order one and each second-
order theory into a first-order one. For simplicity we restrict ourselves to monadic second-order 
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logic, i.e. to second order logic the language of which contains no predicates of any arity greater 
than 1; and we shall further limit ourselves to languages not containing functors. 
 The language of monadic second-order predicate calculus (MPC2) thus consists of 
individual and predicate constants (ic, pc), individual and predicate variables (iv, pv), logical 
operators and quantifiers. The language of two-sorted first-order predicate calculus (PC1(2)) has 
no predicate variables, but rather only individual ones, and its individual constants and variables 
are divided into two sorts (hence we have ic1, ic2 and iv1, iv2). 
 Let us now have a language L1 of MPC2. Let us construct the language L2 of PC1(2) in 
such a way that: 
  - the set of ic1 of L2 is identical with the set of ic of L1 
 - the set of ic2 of L2 is identical with the set of pc of L1 
 - the set of iv1 of L2 is identical with the set of iv of L1 
 - the set of iv2 of L2 is identical with the set of pv of L1 
 - the set of pc of L2 contains a single expression, the binary pc PR of the type <2,1> (i.e. 
such that it yields a statement together with a term of the sort 2 and a term of the sort 1).  
 Let us define, by induction, the translation of expressions of L1 into those of L2 - if X is 
an expression of L1, let us denote its translation into L2 as X*: 
 
 X*  = X if X is ic, pc, iv or pv 
 (P(T))*  = PR(P*,T*) 
 (F1 & F2)*  = F1

* & F2
*  

 (F1 ∨∨∨∨  F2)*  = F1
* ∨∨∨∨  F2

*  
 (F1 →→→→ F2)*  = F1

* →→→→ F2
* 

 (¬F)*   = ¬(F*) 
 (∀∀∀∀ xF)*  = ∀∀∀∀ x*F* 
 (∀∀∀∀ pF)*  = ∀∀∀∀ f*F* 
 
 Let us first note that the translation defined in this way could be interpreted as simply an 
introduction of new notation for MPC2 - as the trivial replacement of the notation p(t) by the 
notation PR(p,t). From this vantage point, PR is nothing more than an auxiliary symbol on par 
with brackets. What is going to change, then, when we begin to see these notational variants of 
formulas of MPC2 as formulas of PC1(2) (and so also PR as a fully-fledged binary predicate)? 
The specific axioms of MPC2 concerning quantification over predicates obviously emerge as 
instances of the axioms of PC1(2) concerning quantification over terms of the sort 2; and 
similarly the rule for second-order generalization. As we include also the instances of the rule of 
comprehension (i.e. statements of the form ∃∃∃∃ p∀∀∀∀ x(p(x)↔↔↔↔F, where x is the only variable free in 
F) among the axioms of MPC2, we have to add also the translation of this rule to the axioms of 
PC1(2). The translation is as follows (where x is a variable of the sort 1, y a variable of the sort 
2, and x is again the only variable free in F): 
 
 ∃∃∃∃ y∀∀∀∀ x(PR(y,x)↔↔↔↔F) (Compr) 
 
If, in L2, the identity sign = is applicable only to terms of the sort 1, the translation thus defined 
will be a one-to-one function (to each formula of L1 there corresponds a unique formula of L2 
and vice versa), and, moreover, it will obviously be the case that a formula of L1 is provable in 
MPC2 just where its translation in L2 is provable in PC1(2)+(Compr). If we admit the identity 



 

sign = between the terms of the sort 2, we will obtain formulas in L2 which are not translations 
of any formulas of L1 (the translation relation will not be surjective); and it will be reasonable to 
add the following axiom: 
 
 ∀∀∀∀ y∀∀∀∀ z(∀∀∀∀ x(PR(y,x)↔↔↔↔PR(z,x))→→→→(y=z)) (Ext) 
 
Clearly, it will hold that a formula of L1 is provable in MPC2 just where its translation in L2 is 
provable in PC1(2)+(Compr)+(Ext). 
 Let now T be a theory in L1; we define the theory T* in L2 in such a way that it contains 
the translation A* of every axiom A of T, plus (Ext) and (Compr). Let I=<U,P> (where U is a set 
and P is an assignment of elements of U to ic’s of L1 and subsets of U to pc’s of L1) a model of 
the theory T. Let U1=U, U2=Pow(U) and let P* be such minimal extension of the interpretation 
function P that P*(PR)={<y,x>│x∈ y}. Then, I*=<U1,U2,P*> is obviously an interpretation of L2. 
It is easy to check that I satisfies a statement F of L1 if and only if I* satisfies the translation F* of 
F into L2; and as I* obviously satisfies both (Ext) and (Compr), I* is a model of T*. It follows 
that to every interpretation of a theory in MPC2 there corresponds a certain unique interpretation 
of the translation of the theory into PC1(2); especially to each interpretation of MPC2 there 
corresponds some unique interpretation of PC1(2)+(Ext)+(Compr). 
 Considering now the inverse case, let us take I*=<U1,U2,P*> to be a model of T*. Let 
every element y of the set U2 be assigned the subset m(y) of U1, so that 
m(y)={x∈ U1│<y,x>∈ P*(PR)}. (In this way we see the elements of U2, informally speaking, as 
‘objectual correlates’ of the subsets of U1 - the element y is the objectual correlate of the set 
m(y), or, we may say, it is ‘this-set-understood-as-an-object’. The axiom (Ext) guarantees that m 
is injective, i.e. that every element of U2 is the objectual correlate of at most one subset of U1). 
Let now P be such a function that P(i)=P*(i*) for every ic i of L1 and P(p)=m(P*(p*)) for every pc 
p of L1; then I=<U1,P> is an interpretation of the language L1. Let us distinguish two cases: first, 
if the range of the function m is the whole set Pow(U1) (i.e. if every u⊆ U1 is the value of m(y) 
for some y∈ U2), then it is again clear that every statement F of L1 is satisfied by I if and only if 
F* is satisfied by I*, and especially that I is the model of T; and the interpretations I and I* 
correspond to each other in this sense. Second, if this is not the case, i.e. if the range of m is the 
proper part of Pow(U1) (i.e. if there exists an u⊆ U1 which is m(y) for no y∈ U2), then we cannot 
exclude the possibility of the existence of a statement F of L1 which is satisfied by I, although F* 
is not satisfied by I*, or vice versa. (Such a statement could, for example, state the existence of 
just such a subset of the universe, the objectual correlate of which is not in U2.) Hence: to some, 
but not necessarily to every, interpretation of a theory in PC1(2)+(Ext)+(Compr) there 
corresponds a unique interpretation of the translation of the theory into MPC2; especially to 
some, but not necessarily to every, interpretation of PC1(2)+(Ext)+(Compr) there corresponds 
some unique interpretation of MPC2. 
 Let us further show that a theory in sorted first-order logic can be straightforwardly 
translated into a theory in unsorted first-order logic. For that purpose, let us construct the 
language L3 of PC1 so that  
 - the set of ic of L3 is identical with the union of the set of ic1 and the set of ic2 of L2 
 - the set of iv of L3 is identical with the union of the set of iv1 and the set of iv2 of L2 
 - the set of pc of L3 is constituted by the binary predicate PR and the unary predicates S1 
and S2.  
 We define the translation of L2 into L3 by induction - if X is an expression of L2, we 
shall denote its translation into L3 as X+: 



 

 
 X+  = X if X is ic or iv 
 PR(T,T')+ = PR(T+,T'+) 
 (F1 & F2)+  = F1

+ & F2
+  

 (F1 ∨∨∨∨  F2)+  = F1
+ ∨∨∨∨  F2

+  
 (F1 →→→→ F2)+  = F1

+ →→→→ F2
+ 

 (¬F)+   = ¬(F+) 
 (∀∀∀∀ xF)+ = ∀∀∀∀ x+(Si(x+)→→→→F+), where i is the sort of the variable x in L2 
 
 However, this translation is surely not surjective: hence there exist formulas of L3 which 
translate no formula of L2, viz. formulas which quantify over the whole universe, rather than 
over one of its parts modeling the sorts L2 (i.e. formulas of the shape ∀∀∀∀ xF or ∃∃∃∃ xF, where F is not 
of the shape Si(x)→→→→F'), or formulas, which contain the predicate Si elsewhere than within the 
antecedent of a quantified implication.  
 Consider a formula F of L2 which is an axiom of PC1(2), and its translation F+ into L3. If 
F is an axiom of the propositional calculus, then F+ is obviously an axiom of PC1; and if F is an 
axiom of quantification, F+ will be a direct consequence of the corresponding general axiom of 
quantification of PC1 if we accept, for every ic1 X occurring in F, the postulate 
 
 S1(X+) (IC1) 
 
and for every such ic2 the postulate 
 
 S2(X+). (IC2) 
 
Let thus T2 be a theory in L2; we define the theory T3 in L3 in such a way that it contains the 
translation A+ of every axiom A of the theory T2, plus the corresponding instance of the axiom 
(IC1) resp. (IC2) for every ic1 resp. ic2 of L2, plus the following axioms (which concern 
exclusively such formulas of L3 which translate no formulas of L2): 
 
 ∃∃∃∃ x.S1(x) (NEmpt1) 
 ∃∃∃∃ x.S2(x) (NEmpt2) 
 ∀∀∀∀ x.S1(x)∨∨∨∨ S2(x) (Exhst) 
 ¬∃∃∃∃ x.S1(x)&S2(x) (Disj) 
 PR(y,x) →→→→ S2(y) & S1(x) (PR) 
 
The theory T3 is obviously a first-order theory and it holds that a formula F of L2 is provable in 
T2 just where its translation F+ into L3 is provable in T3.  
 Let now I=<U1,U2,P> be a model of T2. Let U=U1∪ U2 and let P+ be such function that 
P+(X)=P(X) whenever X is ic or pc of L2, and P(Si)=Ui for i=1,2; then I+=<U,P+> is clearly an 
interpretation of L3 and it is easy to check that a formula F of L2 is satisfied by I if and only if F+ 
is satisfied by I+. Moreover, as I+ obviously satisfies (NEmpt), (Exhst), (Disj), (PR) and all 
instances of (IC1) and (IC2), I+ is a model of T3. Conversely, let I+=<U,P> be a model of T3. Let 
Ui=P(Si) for i=1,2, and let P- be the restriction of the function P to the set of all ic and pc of L2; 
then I=<U1,U2,P-> is obviously an interpretation of L2 and it holds that the formula F+ of L3 is 
satisfied by I+ just where F is satisfied by I; and thus I is also a model of T2. Hence: a formula F 



 

is satisfied by a model of a theory T just where F+ is satisfied by a model of T+; and F is satisfied 
by every model of T just where F+ is satisfied by every model of T+. 
 Assembling our results so far, we can conclude that there exists a class of first-order 
interpretations (namely those which satisfy the axioms (NEmpt), (Exhst1), (Exhst2), (Disj), 
(PR) and the translations (Ext+) and (Compr+) of the axioms (Ext) a (Compr)), which „model“ 
- in a certain, exactly specified sense - second-order interpretations within first-order logic.  
 
 ∀∀∀∀ y.S2(y)→∀→∀→∀→∀ z.S2(z)→→→→(∀∀∀∀ x(S1(x)→→→→(PR(y,x)↔↔↔↔PR(z,x)))→→→→(y=z)) (Ext+) 
 ∃∃∃∃ y.S2(y)&∀∀∀∀ x.S1(x)→→→→(PR(y,x)↔↔↔↔F) (Compr+) 
 
Let us call these interpretations quasisecond-order. If we call the first order theory which is 
constituted by the axioms (NEmpt1), (NEmpt2), (Exhst), (Disj), (PR), (Ext+) and (Compr+) 
quasisecond-order predicate calculus (QPC2), a quasisecond-order interpretation will turn out 
to be a (first-order) interpretation of QPC2. The conclusion reached above then reads that there 
exists a one-to-one correspondence between the set of all second-order and a subset of the set of 
all quasi-second order interpretations such that a second-order interpretation I is a model of a 
second-order theory T just in case the corresponding quasisecond-order interpretation I' is a 
model of the translation of T into first-order logic; hence there is a one-to-one correspondence 
between the set of all second-order and the set of certain quasisecond-order interpretations such 
that it preserves satisfaction - modulo translation.  
 However, there exist also such quasisecond-order interpretations which correspond to no 
second-order interpretation. This means that every formula of MPC2 the translation of which is 
valid in QPC2 is valid in MPC2; but it is generally not the case that the translation of every 
formula valid in MPC2 is valid in QPC2. The reason is that a formula of QPC2 may be satisfied 
by every interpretation which corresponds to an interpretation of MPC2, but in the same time 
not be satisfied by an interpretation which corresponds to no interpretation of MPC2. This 
possibility could be excluded only if we were able to restrict the set of quasisecond-order 
interpretations in such a way that it contained only those interpretations corresponding to 
second-order interpretations. In case of monadic second-order logic this is arguably possible - it 
has been proved that the set of formulas valid in MPC2 is recursive (see, e.g., Dreben and 
Goldfarb, 1979, chapter 8.3). 
 Hence there exist quasisecond-order interpretations to which there correspond no 
second-order interpretations - and these cause the fact that the translations of some formulas 
which are second-order valid are not quasisecond-order valid. In this sense, the translation of 
second-order logic into first-order logic will never be ‘perfect’. The standard second-order logic 
is thus not in general reducible to first-order logic. However, the situation is different if we do 
not define second-order interpretations in the way we have done it above, i.e. standardly - if we 
allow for such interpretations in which the ranges of predicate variables are proper subsets of the 
sets of all the corresponding relations, i.e. if we allow for Henkinian interpretations. There is a 
one-to-one correspondence between quasisecond-order interpretations and Henkinian second-
order interpretations which preserves satisfaction (viz, e.g., Shapiro, 1991, chap. 4.3) - each 
Henkinian interpretation can thus be seen as a quasisecond-order interpretation and vice versa. 
Therefore second-order logic interpreted in the Henkinian way is reducible to first-order logic. 
 
 
 



 

6. Summary of Translatability 
 
We have indicated how to translate monadic second order logic into first-order logic; the 
translation of the full (non-monadic) second-order logic into first-order logic is analogous. We 
only need to add other sorts (or „quasisorts“) for the predicates with arities higher than 1. The 
case of nonmonadic second-order logic, however, is provably different in that it is no longer 
possible to delimit the range of quasi-second order interpretations in such a way that second-
order validity implies quasisecond-order validity: it follows from Gödel’s incompleteness 
theorem that the set of all second-order valid formulas is not recursively enumerable (and hence 
axiomatizable); hence there exists a formula valid in second-order logic the translation of which 
is not valid within quasisecond-order logic. (This follows directly from the fact that there is a 
finite categorical axiomatization of Peano arithmetic within second-order logic: if PA is the 
conjunction of the axioms and G Gödel’s undecidable formula, then the formula PA→G is 
obviously second-order valid, whereas its translation into first-order logic is not valid). Thus, we 
can summarize: 
 1. There exists a translation of second-order logic into first-order logic such that it 
generally holds that if F is a formula of second-order logic and F' its translation into first-order 
logic, then if F' is valid, F is also valid; and, moreover, F is provable in second-order logic if and 
only if F' is provable in first-order logic. 
 2. There does not exist a translation of second-order logic into first-order logic such that 
it would generally hold that if F is a second-order formula and F' its first-order translation, then 
if F is valid, F' would be also valid. 
 In a similar way we can define the translation of any logic of order n into a logic of an 
order lower than n. However, once we begin to investigate the translation of third-order logic 
into second-order logic, we discover a fact which may surprise us: third-order logic, and in 
general any logic of an order higher than 2, is perfectly reducible to second-order logic; hence 
passing from second-order logic to a higher-order one does not provide, in contrast to passing 
from first-order logic to second-order one, an increase in ‘expressive power’. The only 
substantial difference is between the first and the second order - any logic of an order higher 
than 2 can be, without any loss of generality, considered a mere ‘notational variant’ of second-
order logic. 
 Why this is so can be seen if we return to our considerations of the impossibility of 
reducing second-order logic to first-order one. We have reached the conclusion that the problem 
is that the set of quasisecond-order interpretations, as we managed to define it, contains also 
some interpretations which have no equivalents among second-order interpretations; we noted, 
that this problem would be solved if we managed to characterize just the set of those 
quasisecond-order interpretations which do have such counterparts. Returning to the 
terminology of the previous chapter, we can say that they are such interpretations for which each 
subset of the universe has its ‘objectual correlate’; that is if <U1,U2,P> is a quasisecond-order 
interpretation, then it has a second-order equivalent if and only if for every subset u of U1 there 
exists a y from U2 so that u={x∈ U1│<y,x>∈ P*(PR)}. The desired subset of the set of 
quasisecond-order interpretations therefore could be delimited if we added the following axiom 
to the axioms of QPC2 
 
 ∀∀∀∀ p∃∃∃∃ y.S2(y)&∀∀∀∀ x.S1(x)→→→→(PR(y,x)↔↔↔↔p(x)) 
 



 

The reason why we could not do this was that this is a second-order formula - p is a predicate 
variable (hence we were able to accept only the weaker axiom schema (Compr+)). However, the 
situation would be different if the language into which we translate were second-order - then 
such an axiom could be accepted. If what we desired were, as before, the reduction of second-
order logic, then our effort would, of course, be futile (we would find ourselves ‘reducing’ 
second-order logic to second-order logic); nevertheless the procedure can be nontrivially 
employed if what we reduce to second-order logic is a logic of an order higher that 2. For details 
see Shapiro (1989, Chap. 6). 
 
 
 
7. Discussion and Conclusion 
 
The question now is to what extent we really need full second-order predicate calculus with all 
its power, i.e. with all its not-first-order-reducible validities, and to what extent we can make do 
with that part of it which is first-order reducible - in other words, how far we need construe the 
semantics of second-order logic in the standard way, and how far we can construe it in the 
Henkinian way. It seems plausible that if what we are pursuing is the analysis of natural 
language with its pronouncements like (1) or (4), then nothing stands in the way of accepting the 
Henkinian semantics and thus construing higher-order logics as mere notational variants of first-
order logic. 
 The situation is, of course, more involved if what we are investigating are the 
foundations of mathematics. Let us take the definition of infinity, as it is expressed in (6'). It is 
clear that this definition can be articulated as soon as we have the syntactic means of second-
order logic. This definition also always (respectable of whether we interpret the language in the 
standard, or in the Henkinian way) delimits those sets which can be mapped on their own proper 
subsets, and declares these very sets as infinite. It is usually assumed that such a definition is 
correct where we are interpreting the language standardly, but incorrect if our interpretation is 
Henkinian; i.e. that to define the ‘real’ infinity (and hence also finiteness) we need the fully-
fledged second-order logic. This is because under the standard interpretation our ‘nonexistence’ 
necessarily means real nonexistence, and our definition thus delimits just those sets which can 
be really mapped onto their own proper parts and are thus really infinite; whereas under the 
Henkinian interpretation our ‘nonexistence’ can mean only ‘nonexistence within the range of 
the interpretation considered’, and a set which cannot be, apparently, mapped on its proper part 
may quite possibly be infinite - for it may be the case that the mapping of the set on its proper 
subset does indeed exist, but happen not to be included into the range of the interpretation 
considered.  
 Without attempting at a real analysis of this state of affairs, let us note that this construal 
of the difference between the standard and the Henkinian second-order logic, although often 
taken for granted, is not wholly unproblematic. The difficulty is that it presupposes the picture 
according to which we apprehend directly the mathematical reality, and use the languages of 
logic only to describe it (let us stress that to assume this is more than to construe mathematical 
reality realistically, to assume that it exists independently of mathematicians). For the standard 
construal of second-order logic would not make good sense if we did not take such concepts as 
all subsets of a given set for granted. Against such a picture, a different picture can be opposed - 
the picture which was analyzed, for the first time, by Skolem (esp. 1958), and which is based on 
the view that mathematical concepts are inherently relative - that they make sense only within 



 

the context of a particular theory. If we thus say that a set is infinite, we have to ask in which 
theory - for the set  can be finite according to one theory (perhaps according to the Henkinian 
second-order logic), whereas be infinite according to another theory  (the standard second-order 
logic). The fact that from the viewpoint of a standard model the corresponding Henkinian model 
may appear as lacking something does not yet mean that the former is complete, and the latter 
incomplete, in an absolute sense. 
 However, this view makes the very notion of a standard interpretation problematic: for 
‘to be standard’ means ‘to include all subsets’, and something thus can be called standard only 
from an absolute vantage point, from which it is possible to decide, when the subsets are all, 
and when not. Standard interpretations therefore cannot be delimited otherwise than by 
recoursing to a further unanalyzed concept of all subsets (which is quite straightforward for 
finite sets, but less so for infinite ones) - in contrast to Henkinian interpretations they cannot be 
gerrymandered via a recursive specification. It follows that to the same extent to which second-
order logic is more plausible as the foundation of mathematics, it is - in a certain sense - more 
trivial. Exaggerating somewhat we can say that whereas we lack the means to characterize, e.g., 
infinite sets within first-order logic, in second-order logic we are enabled to do so, but with little 
more significance than when we simply said that infinite sets were those which were (‘really’) 
infinite. 
 Although the relationship between first-order and second-order logic may present 
problems, it is sure that the relation between second-order and higher-order logic is not 
problematic - any logic of an order higher than two can be considered as a ‘notational’ variant of 
second-order logic (which does not, of course, preclude this very notational variant from being 
sometimes quite useful). 
 I think that discussions of the relationship between first-order and higher-order logic 
often suffer both from the fact that its participants do not satisfactorily specify what exactly they 
mean by higher-order logic, and from the fact that they do not consider the whole depth of the 
problematicity of the relationship. This paper is meant to summarize some facts by which this 
problematicity is characterized. 
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