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MEANING AS AN INFERENTIAL ROLE

ABSTRACT. While according to the inferentialists, meaning is always a kind of

inferential role, proponents of other approaches to semantics often doubt that actual
meanings, as they see them, can be generally reduced to inferential roles. In this
paper we propose a formal framework for considering the hypothesis of the ‘‘general

inferentializability of meaning’’. We provide very general definitions of both
‘‘semantics’’ and ‘‘inference’’ and study the question which kinds of semantics can be
reasonably seen as engendered by inferences. We restrict ourselves to logical con-

stants; and especially to the question of the fesaibility of seeing the meanings of those
of classical logic in an inferential way. The answer we reach is positive (although with
some provisos).

1. THE INFERENTIALIST TRADITION

Contemporary theoreticians of meaning can be divided, with a degree
of oversimplification, into those seeing themeaning of an expression as
principally a matter of what the expression denotes or stands for, and
those seeing it as a matter of how the expression is used. A prominent
place among the latter is assumed by those who seek the basis of
meaning in the usage of an expression, in the ‘‘language games’’ we play
with it; and a prominent place among them is assumed by those who
claim that meaning is a matter of the role of the expression w.r.t. the
rules of the language games, especially the inferential rules, which are,
as Brandom (1994) points out, crucial for our all-important game of
‘‘giving and asking for reasons’’. From this viewpoint, the meaning of
an expression is, principally, its inferential role.

Brandom (1985, p. 31) characterizes the inferentialist tradition
(which, according to him, can be traced back to Leibniz) in the fol-
lowing way:

The philosophical tradition can be portrayed as providing two different models for the

significances which are proximal objects of explicit understanding, representational
and inferential. We may call ‘‘representationalism’’ the semantically reductive view
that inference is to be explained away in favor of more primitive representational

relations.
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... By ‘‘inferentialism’’, on the other hand, one would mean the complementary
semantically reductive order of explanation which would define representational

features of subsentential expressions in terms of the inferential relations of sentences
containing them.

Various degrees of commitment to inferentialism can be found also
within the writing of some of the founding fathers of analytic phi-
losophy. Thus, Frege’s first account for the concept of ‘‘conceptual
content’’, which he presents in his Begriffsschrift (1879, pp. 2–3), is
distinctively inferentialist:

The contents of two judgments can differ in two ways: first, it may be the case that
[all] the consequences which may be derived from the first judgment combined with

certain others can always be derived also from the second judgment combined with
the same others; secondly this may not be the case ... I call the part of the content
which is the same in both the conceptual content.

Similarly, Wittgenstein assumed a distinctively inferentialist stand-
point in a particular stage of the development of his thought from the
Tractarian representationalism to the more inclusive use theory of
meaning of the Investigations. In his Remarks on the Foundation of
Mathematics (1956, pp. 24, 398) we can read:

The rules of logical inference cannot be either wrong or right. They determine the

meaning of the signs ... We can conceive the rules of inference – I want to say – as
giving the signs their meaning, because they are rules for the use of these signs.

Recently, the philosophical foundations of inferentialism have been
elaborated especially by Brandom (1994, p. 144):

It is only insofar as it is appealed to in explaining the circumstances under which
judgments and inferences are properly made and the proper consequences of doing so
that something associatedby the theoristwith interpreted states or expressions qualifies

as a semantic interpretant, or deserves to be called a theoretical concept of a content.

Hence, according to Brandom (2000, p. 30), the inferentialist
semantic explanations

beginning with proprieties of inference ... explain propositional content, and in terms

of both go on to explain the conceptual content expressed by subsentential expres-
sions such as singular terms and predicates.1

All of this indicates that the idea of identifying meanings with
inferential roles is worth investigating. However, its viability has been
often challenged (see, e.g. Prior 1960/1961, or Fodor and LePore
1993). The most straightforward challenges amount to claiming that
the meanings that some of our expressions clearly seem to carry
cannot be envisaged as creatures of inference. This invites the general
question, which I would like to address in this paper:

JAROSLAV PEREGRIN2



(*) Which kinds of meanings can be conferred on words by means of inferential rules?

I will neither endorse a specific version of inferentialism, nor argue
for inferentialism as a philosophical position, nor discuss its philo-
sophical foundations (I have done so elsewhere – see esp. Peregrin
2001, Chapter VIII, 2004b). Instead, I will focus on establishing a
framework which would allow to make the question (*) reasonably
precise and I will make some rather technical points which I think are
relevant for the debate – though their exact philosophical significance
may not be obvious.

I will simply presuppose that languages possess inferential struc-
tures, i.e. that in any language worth its name there are some sen-
tences which can be (correctly) inferred from other sentences. (Can
we have a language without such a structure? We can have something,
but I do not think it would be a language in a non-metaphoric sense
of the word.) I will also presuppose that this structure is not derived
from the truth-valuations of the sentences or from truth-conditions.
(How, then, does it come into being? Brandom sees it as a kind of
commitment- or entitlement-preservation – to say that A is inferable
from X is to say that whoever is committed [entitled] to X is com-
mitted [entitled] to A. This may lead to a finer inferential apparatus of
the kind of that presented by Lance 1995 – but I will not go into these
details here.) In addition to inference, we will consider the relation of
incompatibility, which sometimes also plays a vital role within in-
ferentialist explanations. (This is connected to another important
point related to the very nature of inference. It is often assumed
that X ‘ A amounts to a prescription: an obligation to assert A when
one has asserted X, to pass over from the thought that X to the
thought that A, etc. But this is obviously not the case, for such pre-
scriptions simply could never be obeyed, it being impossible to assert
all consequences of one’s assertion, or think all consequences of one’s
thought. Hence X ‘ A is much more reasonably construed as a con-
straint: the exclusion of the possibility to deny A when one has as-
serted X, i.e. the incompatibility of X with the negation of A.)

As it does not seem reasonable to presuppose that for each word
there must be a meaning-conferring inferential pattern independent
of those of other words, we do not exclude the possibility that the
meaning of a word is specifiable only in a mutual dependence with
meanings of other words – i.e. that the pattern constitutive of the
meaning of a word involves other words. From this viewpoint it
might be better to talk, more generally, about furnishing semantics
for a language than about conferring meaning on a single word.
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(Establishing semantics for a language is conferring meanings on all
its words; whereas conferring meaning on one of its words may be
inextricable from conferring meanings on other words.)

Hence it may be better if we reformulate the above question as

(**) Which kinds of semantics are determined by inferential rules?

However, to be able to deal with this question a rigorous manner, we
must first clarify or explicate all the terms occurring in it; and this is
the theme for the upcoming sections. Let us start from the term
‘‘inferential’’.

In what follows, I will restrict my attention to logical vocabulary,
which offers the most perspicuous stratum of language (especially in
the formal languages which we have come to employ to regiment the
natural ones). This should not be read as rejecting the possibility of
the inferential treatment of other parts of our vocabulary. On the
contrary, I believe semantics of any kind of expression can be con-
strued as a kind of ‘‘inferential role’’ (though in the case of empirical
words this presupposes extending the concept of inference beyond its
usual limits, to ‘‘inferences’’ from the world to language and vice
versa2). However, here I want to restrict myself to the simplest case of
logical words.

2. INFERENCE AND INCOMPATIBILITY

A (strong) inferential structure is an ordered pair hS;‘Si, where S is a
set whose elements are called statements and ‘S is a relation between
finite sequences of elements of S and elements of S. If the sequence
hA1; . . . ;Ani of statements is in the relation ‘S to the statement A then
we will write simply

A1; . . . ;An ‘S A

We will use the letters A, A1, A2,..., B, C for statements, the letters X,
Y, Z for finite sequences thereof, and U, V for sets of statements. If X
is a sequence of statements, then X* will be the set consisting of all its
constituent statements.

We define

CnðUÞ ¼ fAj there is a sequence X such that X� �U

and X ‘S Ag

We will say that U is closed if Cn(U)=U.
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We will say thathS;‘Si is standard iff for every X, Y, Z, A, B, C:

(REF) A ‘S A
(EXT) if X;Y ‘S A; then X;B;Y ‘S A
(CON) if X;A;A;Y ‘S B; then X;A;Y ‘S B
(PERM) if X;A;B;Y ‘S C; then X;B;A;Y ‘S C
(CUT) if X;A;Y ‘S B and Z ‘S A; then X;Z;Y ‘S B

The properties of ‘S spelled out by these schemas will be also called
reflexivity, extendability, contractibility, permutability and transitivity.
(The schemas are also known as identity, thinning, contraction, per-
mutation and cut.)

An incompatibility structure is an ordered pair hS;?Si, where S is a
set of statements and ?S is a set of finite sequences of elements of S. If
the sequence A1,...,An belongs to ?S, we will write

?S A1; . . . ;An

We will say that a set U of statements is consistent if there is no
sequence X such that X� � U and ?SX.

We will say that hS;?Si is standard iff for every X, Y, Z, A, B, C

(EXT) if ?S X;Y, then ?S X;A;Y
(CON) if ?S X;A;A;Y, then ?S X;A;Y
(PERM) if ?S X;A;B;Y, then ?SX;B;A;Y

Let hS; ‘Si be an inferential structure. Let us define ?S as follows:

?SX �Def: X ‘S A forevery A:

The resulting incompatibility structure hS;?Si will be called induced
by hS;‘Si.

Let conversely hS;?Si be an incompatibility structure. Let

X ‘S A �Def: ?SY;X;Z for every Y and Z such that ?SY;A;Z:

The resulting inferential structure hS;‘Si will be called induced by
hS;?Si.
THEOREM 1. If an inferential structure is standard, then the
incompatibility structure induced by it is standard. If an incompati-
bility structure is standard, then the inferential structure induced by it
is standard.
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PROOF. Most of it is trivial, so let us prove only that if an incom-
patibility structure is standard, then the induced inference is transi-
tive. Hence we have to prove that if

(i) ?SW;X;A;Y;W0 for everyW andW0 such that?SW;B;W0;

and

(ii) ?SW;Z;W0 for every W and W0 such that ?SW;A;W0;

then

(iii) ?SW;X;Z;Y;W0 for everyW andW0 such that ?SW;B;W0:

It is clear that (ii) is equivalent to

ðii0Þ ?S W;X;Z;Y;W0 for every W;X;Y and W0such that

?SW;X;A;Y;W0

and hence to

(ii¢¢) for every X and Y it is the case that ?SW;X;Z;Y;W0 for everyW
and W¢ such that ?SW;X;A;Y;W0.

And it is clear that (iii) is a consequence of (i) and (ii¢¢). h

A generalized inferential structure (gis) is an ordered triple
hS;‘S;?Si. It is called standard iff the following conditions are ful-
filled:

(1) hS;‘Si is standard;
(2) hS;?Si is standard;
(3) if ?SX, then X ‘S A for every A;
(4) if X ‘S A then ?SY;X;Z for every Y and Z such that ?SY;A;Z.

A standard gis is called perfect, iff it moreover fulfills the following:

(5) if X ‘S A for every A, then ?SX (i.e. ?S is induced by ‘S)
(6) if ?SY;X;Z for every Y and Z such that ?SY;A;Z, then X ‘S A

(i.e. ‘S is induced by?S).

Thus, in a perfect structure, incompatibility is reducible to inference
(X is incompatible iff everything is inferable from it) and vice versa
(A is inferable form X iff everything which is incompatible with A is
also incompatible with X).

Let us now prove one more general result concerning standard gis’s.
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THEOREM 2. Let hS;‘S;?Si be a standard gis. Then Cn(X*) is
inconsistent only if ?SX.

PROOF. Let Cn(X*) be inconsistent. This means that there exists a
sequence Y=A1,...,An of statements such that Y� �Cn(X*) and ?SY.
This further means that there exist X1,...,Xn so that X�i � X� and
Xi ‘S Ai. But due to the extendability and permutability of ‘S, it
follows that X ‘S Ai. Thus, whatever is incompatible with A1 must be
incompatible with X; hence ?SX;A2; . . . ;An, and hence, as ?S is
permutable, it is the case that ?SA2; . . . ;An;X. Then, as whatever is
incompatible with A2 is incompatible with X, it is the case that
?SA3; . . . ;An;X;X, and so on. Ultimately, ?SX; . . . ;X, and, as ?S is
contractible, it is the case that ?SX. h

3. INFERENCE AND TRUTH-PRESERVATION

Suppose we have a set V of truth valuations of elements of S. i.e. a
subset of {0,1}S. (Thus, valuations can be identified with subsets of
S.) The pair hS;Vi will be called a semantic system. Then we can
define the relation �S of entailment and the property’s of incompat-
ibility as follows:

X �S A iff v(A) = 1 for every v2V such that v(B)=1 for every
B2X* � SX iff for no v2V it is the case that v(B) = 1 for every
B2X*

Then hS;�S; � Si is a gis; and we will say that it is the gis of hS;Vi.
It is easily checked that this gis is standard.

Let us call a gis hS;‘S;?Si truth-preserving if there is a V such that
hS;‘S; ?Si is the structure of hS;Vi. We have seen that standardness
is a necessary condition of truth-preservingness; now we will show
that it is also a sufficient condition – hence that a gis is truth-pre-
serving iff it is standard.

THEOREM 3. A gis is truth-preserving if it is standard.

PROOF. Let V be the class of all closed and consistent subsets of S.
We will first prove that then X ‘S A iff X �S A. The direct implica-
tion is straightforward: if X ‘S A and X� � U for some U2V, then
A2Cn (U) and hence, as U is closed, A2U. So we only have to prove
the inverse implication.

Hence let X �S A. This means that whenever U2V and X� � U,
A2U; i.e. that A2U for every U such that
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(i) X� � U
(ii) U is consistent (i.e.Y� � U for no Y such that ?SY)
(iii) U is closed (i.e. Cn(U)=U).

As ‘S is reflexive, X� � Cn ðX�Þ. As it is transitive, Cn(Cn(X*)) =
Cn(X*). This means that Cn(X*), in the role of U, satisfies (i) and (iii),
and hence if it is consistent, then A2Cn(X*). As a consequence we
have: either A2Cn (X*), or Y� � CnðX�Þ for some Y such that?SY. In
both cases it must be the case that Z ‘S A for some sequence Z all of
whose members belong to X*. Due to the extendability and con-
tractibility of ‘S, this means that Y ‘S A for some sequence Y with the
same elements as X and hence, due to the permutability of ‘S;X ‘S A.

Now we will prove that ?SX iff � SX; and as the direct implication
is again obvious, it is enough to prove that �SX entails ?SX. So let it
be the case that � SX. This means that X� � U for no U2V; and as
X� � Cn(X*), that CnðX�Þ � U for no U2V. But as Cn(X*) is closed
and V is the set of all closed and consistent subsets of S, Cn(X*) is
bound to be inconsistent. Hence, according to Theorem 2, ?SX.

Thereby the proof is finished. h

This means that a structure is truth-preserving if and only if it is
standard; and therefore we have a reason to be interested in standard
structures: for is not truth-preservation what logic is about? True, for
an inferentialist, truth-preservation is not prior to inference, but even
she would probably want to have inference explicable as truth-pres-
ervation – at the end of the day, if not at the beginning. She might
want to inverse the order of explanation and claim that ‘truth is that
which is preserved by inference’. Hence should we pay special
attention to standard structures?

There may appear to be reasons not to do so. Thus, for example,
Lance (1995) and Lance and Kremer (1994, 1996) have forcefully
argued that the notion of inference appropriate to the Brandomian
inferentialist framework is one that does justice to relevant, rather
than classical logic. This indicates that the true inferential structure of
natural language might not be standard – we should not expect that it
will comply to (EXT). However, here I think we must be mindful of
an important distinction.

Given a collection R of rules, we can ask what can be inferred
(proved, justified, substantiated ...) in their terms. And it seems clear
that in the intuitive sense of ‘‘inference’’, A can, for example, always
be inferred from A, independently of the nature of R – A is always
justified given A, and hence (REF) appears to be vindicated. Also if A
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can be inferred – in this sense – from X (A is justified given X), it can
be inferred from anything more than X (A is justified given any
superset X¢ of X – the justification is the same, simply ignoring any
extra elements of X¢). Hence from this viewpoint we should also
accept (EXT), and similarly all the other structural rules.

This indicates that given a ‘‘substandard’’ inferential relation, the
question whether A is inferable from X in terms of the relation is
ambiguous. Besides the obvious answer that A is inferable from X iff
it is in the given relation to it, there is the response that it is so
inferable if it can be obtained from X in terms of the given relation
plus the obvious properties of inference (in the intuitive sense of the
word). Hence we have inference in the narrow, and inference in the
wider sense: whereas inferability in terms of R in the narrow sense
simply amounts to R, inferability in terms of R in the wide sense
amounts to the standard closure of R. Hence special attention for
standard inferential structures might be vindicated by the fact that
inference in the wider sense does inevitably lead to them.

Moreover, it seems to be precisely this closure which interconnects
inference with truth-preservation (i.e. consequence). We claimed that
inference should be construable as truth-preserving not only on the
non-inferentialist construal, according to which it is merely an
expedient of our account for truth-preservation, but also on the in-
ferentialist account, according to which it underlies truth-preserva-
tion. This indicates why the basic inferential structure should be
‘‘sub-standard’’: it should be a part of, and extendable to, a standard
structure. Furthermore, whereas on the non-inferentialist construal it
is simply the case that the closer it is to truth-preservation the better
(and it is usually taken for granted that the results of Tarski and
Gödel block the possibility of covering the whole of it), on the in-
ferentialist construal this need not be the case. However, there should
be a unique way from it to truth-preservation: for the truth-preser-
vation must have arisen from inference.

Hence even if we accept the arguments in favor of the relevantist
account for inference, there is a sense in which we can still see
inference as standard and thus amounting to truth-preservation. In
fact, on the relevantist construal,

inference ¼ truth-preservationþ relevance;

but as we do not take truth as more basic than inference, we cannot
take the ‘underlying’ at face value and we must transform this into

truth-preservation ¼ inference� relevance
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And the ‘‘subtraction’’ of relevance seems to amount to forming the
standard closure.

Also it seems that what has been just said about inference and
inferential structures applies mutatis mutandis to incompatibility and
incompatibility structures: If we delimit a collection of incompatible
sets, then besides a set being incompatible in the narrow sense of
being a member of this collection there is again the wider sense in
which it is incompatible iff its incompatibility follows from the defi-
nition of the collection plus the obvious properties of incompatibility.
But we should note that generalized inferential structures, especially
the rules (3) and (4) interconnecting inference and incompatibility,
are more problematic from this viewpoint. In fact, they may mark a
deeper than just terminological issue between the relevantists and
non-relevantists:3 it seems to be possible that the relevantist, eved if
she admitted that there is a sense of ‘‘inference’’ in which inference is
always standard (thought this is not the sense she would prefer), and
there is a sense on ‘‘incompatibility’’ in which incompatibility is al-
ways standard, may still deny that inference and incompatibility in
these senses are tied together by the ex falso quodlibet rule (3).

There are also different arguments against the standardness of
inferential structures. If we take natural language at face value, then
we might wonder whether we can take truth-preservation itself as
standard. The point is that many sentences of natural language ac-
quire truth-values only when embedded within a context: thus though
the statement He is bald does not have a truth value by itself, it
acquires one when following The king of France is wise. Hence we
may say that The king of France is wise followed by He is bald entails
The king of France is bald, but this statement is surely not entailed by
He is bald followed by The king of France is wise. This gives us a
reason to wonder whether we can see truth-preservation itself as
complying to (PERM). The standard solution to this, of course, is to
restrict logical investigations to those sentences which are not context-
dependent; but there remains also the possibility of taking it at face
value which may lead to an approach to semantics different from the
one investigated here (see Peregrin in press-a, for a sketch).

All in all, we conclude that both from the non-inferentialist and
from the inferentialist viewpoint we can see inference as ‘‘approxi-
mating’’ truth-preservation (though the ‘‘approximating’’ can be ta-
ken literally only in the former case). How, generally, can we get
truth-preservation out of inference? Well, we saw that, for example,
the relation of truth-preservation arising from alleviating the
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relevance requirement from relevantist inference might amount to the
minimal standard relation containing the inferential relation. How-
ever, we will take a more general approach to the topic, which will
emerge from our explication the of the terms ‘‘semantics’’ and
‘‘determines’’. But beforehand, let us consider one more non-infer-
entialist aspect of the situation.

4. EXPRESSIVE RESOURCES OF SEMANTIC SYSTEMS

Though from the inferentialist viewpoint, we establish semantics by
means of inferences, from a more common viewpoint, semantics is
something which is here prior to inferences and we use inferences only
to ‘‘capture’’ it. From the latter viewpoint, the acceptable truth-val-
uations of a semantic system delimit what is possible, i.e. represent
‘‘possible worlds’’, and a statement can be semantically characterized
by the class of worlds in which it is true. Hence classes of possible
worlds are potential semantic values of statements; and languages
may differ as to their ‘‘expressive power’’.

Take the system hfA;Bg; ffA;Bg; fAg; fBg; ;gi, i.e. a system with
two statements and all possible truth-valuations. If we number the
valuations in the order in which they are listed, we can see that the
statement A belongs to 1 and 2, whereas B belongs to 1 and 3; hence if
we switch to the possible-world-perspective, then A expresses {1,2},
whereas B expresses {1,3}. There is no statement expressing {1}, or
{1,4}, or, say, {2,3,4}. This can be improved by extending the lan-
guage: we can, for example, add a statement C expressing {1}:
hfA;B;Cg; ffA;B;Cg; fAg; fBg; ;gi.4

To make these considerations more rigorous, we need some more
terminology. Let F ¼ hS;Vi be a semantic system. For every state-
ment A from S, let |A| denote the set of all and only elements of V
which contain A; hence let

jAj �Def: fU 2 V j A 2 Ug

A subset V¢ of V is called expressible in F iff there is an A2S so that
|A|=V¢. F is called (fully) expressible iff every subset of V is
expressible. F is called Boolean expressible iff the complement of any
expressible set is expressible and the union of any two expressible sets
is again expressible. (It is obvious that if a semantic system is Boolean
expressible, then its statements can be seen as constituting a Boolean
algebra.)
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Fully expressible systems constitute a proper subset of the set of
semantic systems; however, in some respects we may want to restrict
our attention to them. The point is that it seems that if our ultimate
target is natural language, then we should not take a lack of
expressive resources too seriously. A natural language may, for var-
ious contingent reasons, lack some words and consequently some
sentences, but this does not seem to be a matter of its �nature� –
natural languages are always flexible enough to take in their stride the
creation of new expressive resources whenever needed.5 Therefore it
may often seem reasonable to simply presuppose full expressibility, or
at least something close to it (like Boolean expressibility).

Fully expressible systems have some properties which not all
semantic systems have. An example is spelled out by the following
theorem:

THEOREM 4. The gis of an expressible semantic system is perfect.

PROOF. Let X �S A for every A. Let # be an element of S such that
|#|¼ ;. Then X �S # and hence X cannot be part of any element of V
which does not contain #. But as # belongs to no such element,
neither can X, and hence � SX. Let it now be the case that � SY;X;Z
for every Y and Z such that � Y;A;Z. Now suppose there is a U2V
such that X� � U, but A 62U. Let B2S be such that |B|={U}. Then
obviously � SA;B, but not � SX;B. h

We can see that the only properties of the semantic system used in
the proof are the expressibility of the empty set and of every single-
ton. This indicates that we do not need full expressibility; and indeed
it can be shown that Boolean expressibility, or even expressibility of
the empty set plus the expressibility of the complement of every
expressible set is enough.6

5. SEMANTIC SYSTEMS AND SEMANTICS

Clearly the question (**) makes sense only provided we have a non-
inferentialist explication of ‘‘semantics’’ – i.e. it makes little sense to
an inferentialist who denies the possibility of such an explication.
However, the fact that we will provide such an independent expli-
cation should not be construed as building the rejection of inferen-
tialism into the foundation of our approach. On the contrary, the
point of our effort is in checking whether the prima facie indepen-
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dence could perhaps be eliminated – and if so, then inferentialism
would appear to be vindicated (at least to the extent to which we
admit that our delimitation of semantics is quite general).

So how can we delimit a general concept of semantics independent
of inferences? Elsewhere (see Peregrin 1995) I argued that the gen-
eralization of the concept of semantics interpretation, as the concept is
used in logic, comes down to ‘‘minimal’’ compositional mapping ver-
ifying some sentences and falsifying others. I subsequently argued
(Peregrin 1997) that different semantic interpretations of this kind
can still often be seen as amounting to the same semantics (in the
intuitive sense of the word); and I concluded that what makes
interpretations substantially different are differences within the
respective spaces of acceptable truth valuations which they institute.
In other words, I came to the conclusion that the most general
explication of ‘‘semantics’’ is a space of truth-valuations, i.e. that it is
provided by our above concept of semantic system. This conclusion
accords with the approach pioneered by van Fraassen (1971) and
recently elaborated by Dunn and Hardegree (2000). As it would be
beyond the scope of the present paper to argue for this at length, I
give here only a digest.

Semantic interpretation seems obviously to go hand in hand with a
truth-valuation of sentences: sentences (or at least some of them), by
being semantically interpreted, become true or false. However, this
does not necessarily mean that semantic interpretation fixes the truth
values of all sentences – surely a sentence such as ‘‘The sun shines’’
does not become true or false by being made to mean what it does.
What semantic interpretation generally does is to impose limits on
possible truth-valuations: e.g., it determines that if ‘‘The sun shines’’
is true, then ‘‘The sun does not shine’’ must be false; hence that the
sentence ‘‘The sun shines and the sun does not shine’’ is bound to be
always false, etc. This means that semantic interpretation should put
some constraints on the possible truth-valuations of sentences.7

Moreover, many philosophers of language (most notably
Davidson, 1984) have argued that all there is to meaning must consist
in truth conditions. Now let us think about the ways truth conditions
can be articulated: we must say something of the form

X is true iff Y;

where X is replaced by the name of a sentence and Y by a description
of the conditions – i.e. a sentence. Hence we need a language in which
the truth conditions are expressed – a metalanguage. However, then
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our theory will work only so long as we take the semantics of the
metalanguage at face value – in fact we will merely have reduced the
truth conditions of the considered sentence, X, to a sentence of
the metalanguage, namely the one replacing Y. And to require that
the semantics of the latter be explicated equally rigorously as that of
X would obviously set an infinite regress in motion.

This indicates that it might be desirable to refrain from having
recourse to a metalanguage and instead to make do with the re-
sources of the object language, the language under investigation.
Hence suppose that we would like to use a sentence of this very
language in place of Y. Which sentence should it be? The truth
conditions of X are clearly best captured by X itself; but using X in
place of Y would clearly result in an uninteresting truism. But, at least
in some cases, there is the possibility of using a different sentence of
the same language. So let us assume that we use a sentence Z in place
of Y. Saying ‘‘X is true if ...’’ or ‘‘X is true only if ...’’ with Z in place
of the ‘‘...’’ amounts to claiming that X is entailed by Z and that X
entails Z, respectively. (Claiming ‘‘‘Fido is a mammal’’ is true if
‘‘Fido is a dog’’ is claiming that ‘‘Fido is a mammal’’ is entailed by
‘‘Fido is a dog’’’.) And claiming that X is entailed by Z in turn
amounts to claiming that every truth-valuation which verifies Z
verifies also X – or that any truth-valuation not doing so is not
acceptable. Hence, the specification of the range of acceptable truth-
valuations represents that part of the specification of truth-conditions
which can be accounted for without mobilizing the resources of an-
other language.8

If we accept this, then the question (**) turns on the relationship
between semantic systems (spaces of truth-valuations of sentences)
and inferential structures (relations between finite sequence of sen-
tences and sentences), in particular on the way in which the latter are
capable of ‘‘determining’’ the former. So let us now turn our atten-
tion to this determining.

6. THE INFERENTIALIZABILLITY OF SEMANTICS

An inference can be seen as a means of excluding certain truth-val-
uations of the underlying language: stipulating X ‘ A can be seen as
excluding all truth-valuations which contain X and do not contain A.
In this sense, every inferential structure determines a certain semantic
system (and if we agree that meanings are grounded in truth condi-
tions, thereby it also confers meanings on the elements of the
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underlying language). And hence the question which kinds of
meanings are conferable inferentially is intimately connected with the
question which semantic systems can be determined by inferential
structures. This leads to the definition: the gis hS;‘;?i determines the
semantic system hS;Vi, where V is the set of all v which fulfill the
following conditions:

(i) if v(B)=1 for every constituent B of X and X ‘ A, then v(A)=1;
(ii) if ?X, then v(A) „ 1 for at least one A2X*.

Now the latter question might prima facie seem trivial: we have
seen that every semantic system has an inferential structure; does this
inferential structure not determine this very system? However, the
answer is notoriously negative: an inferential structure of a semantic
system might determine a different semantic system (though, of
course, a system which has the same inferential structure).

Let S={A,B} and let V consist of the two ‘‘truth-value-swapping’’
valuations, i.e. the valuations {A} and {B}. Let us consider all the
possible instances of inference for S, and for each of them the valu-
ations we exclude by its adoption:

‘ A ;; fBg
‘ B ;; fAg
A ‘ A �
B ‘ A fBg
A;B ‘ A �
B ‘ B �
A ‘ B fAg
A;B ‘ B �

This means that no combination of the inferences is capable of
excluding the valuation {A, B}; and also no combination is capable of
excluding ; without excluding either {A} or {B}. In other words, no
inferential structure determines the system Æ{A, B},{{A},{B}}æ.

Now consider, in addition, the possible instances of incompati-
bility, and the valuations excluded by them:

?; ;; fAg; fBg; fA;Bg
?A fAg; fA;Bg
?B fBg; fA;Bg
?A;B fA;Bg

With their aid, it becomes possible to exclude {A,B}, by stipulating
?A;B. However, it is still not possible to exclude ; without excluding
either {A} or {B}. Hence no gis determines Æ{A, B},{{A},{B}}æ. Now
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this appears alarming: for the semantics we have just considered is
precisely what is needed to make B into the negation of A (and vice
versa). This indicates that inferentialism might fall short of conferring
such an ordinary meaning as that of the standard negation.

In fact, this should not be surprising at all. What we need to
characterize negation is the stipulation that (i) if a statement is true,
its negation is false, and (ii) if a statement is false, its negation is true.
However, what we can stipulate in terms of inferences is that a
statement is true if some other statements are true. In terms of
incompatibility we can also stipulate that some statements cannot be
true jointly, hence that if some statements are true, a statement is
false, which covers (i) – but we still cannot cover (ii).

As can be easily observed, the situation is similar w.r.t. disjunction
and implication. In the former case, it is easy to exclude the valua-
tions which make one of the disjuncts true and the disjunction false
(by the inferences A ‘ A�B and B ‘ A�B), but we cannot exclude
all those which make the disjunction true and both disjuncts false. In
the latter, we can easily guarantee that the implication is true if the
consequent is true, and that it is true only if the antecedent is false or
the consequent is true (B ‘ A! B and A;A! B ‘ B), but we cannot
guarantee that it is true if the antecedent is false.

Does this mean that the standard semantics for the classical
propositional calculus is not inferential? And if so, how does it square
with the completeness of the very calculus – for does not the com-
pleteness proof show that the axiomatic (i.e. inferential) delimitation
of the calculus coincides with the semantic one? In fact, it is indeed
not inferential, which does not contradict its completeness. The axi-
omatization of the calculus yields us its inferential structure, but this
structure does not determine the semantics of the calculus. As a
matter of fact, it determines another semantics, which, however,
shares the set of tautologies with the calculus (which is what vindi-
cates the completeness proof).

7. THE GENTZENIAN GENERALIZATION

Let us nowadopt a notation different from the one used so far andwrite

X ‘

instead of

?X:
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In this way, we can get inference and incompatibility under one roof –
starting to treat ‘ as a relation between finite sequences of statements
and finite sequences of statements of length not greater than one. The
ordered pair hS;‘Si with ‘S of this kind will be called a weak infer-
ential structure. Such a structure will be called standard if the following
holds (where G is a sequence of statements of length at most one):

(REF) A ‘S A
(EXT) if X;Y ‘S G; then X;B;Y ‘S G
(CON) if X;A;A;Y ‘S G; then X;A;Y ‘S G
(PERM) if X;A;B;Y ‘S G; then X;B;A;Y ‘S G
(CUT) if X;A;Y ‘S G and Z ‘S A; then X;Z;Y ‘S G
(EXT0Þ if X ‘S; then X ‘S A

If hS;‘Si is a weak inferential structure, then the strong inferential
structure which arises out of restricting ‘S to instances with non-
empty right-hand sides, will be called its strong restriction. It is obvi-
ous that the strong restriction of a standard weak structure is itself
standard. If, on the other hand, we restrict ‘S to instances with empty
right-hand sides, we get an incompatibility structure, which will be
called the incompatibility restriction of the original structure. It is easy
to show that if a structure is standard, then both its strong restriction
and its incompatibility restriction are also standard. Moreover, they
make up a standard generalized inferential structure.

The condition (EXT¢) indicates that we can add statements on
the right-hand side of ‘S (of course if we thereby do not make it
longer than 1). However, what, then, about relaxing this restric-
tion, i.e. allowing for arbitrary finite sequences on the right side of
‘S, and letting the right hand side be freely expandable just as the
left hand side is? It is clear that what we reach in this way is in
fact Gentzen’s sequent calculus. The ordered pair hS;‘Si with ‘S
of this kind will be called a quasiinferential structure. Such a
structure will be called standard if the following holds:

(REF) A ‘S A
(EXT) if X;Y ‘S U;V; then X;A;Y ‘S U;V
and X;Y ‘S U;A;V
(CON) if X;A;A;Y ‘S U; then;A;Y ‘S U;
if X ‘S U;A;A;V then X ‘S U;A;V
(PERM) if X;A;B;Y ‘S U; then X;B;A;Y ‘S U;
if X ‘S U;A;B;V then X ‘S U;B;A;V
(CUT) if X;A;Y ‘S U and Z ‘S V;A;W;
then X;Z;Y ‘S V;U;W
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If hS;‘Si is a quasiinferential structure, then the weak inferential
structure which arises out of restricting ‘S to instances with right-
hand side of length not greater than 1, will be called its weak
restriction. The strong restriction of this restriction, i.e. the strong
inferential structure which arises out of restricting ‘S to instances
with right-hand side of length precisely 1, will be called its strong
restriction. Again, it is obvious that if a qis is standard, then both its
weak restriction and its strong restriction are standard.The problem
with this version of an inferential structure is that there seems to be
reason to prefer a single-conclusion inference to the multiple-con-
clusion one. Thus, if we subscribe to the Brandomian variety of
inferentialism, we submit that inferences are originally a matter of
treating people as committed or entitled to something, in particular
as treating their commitment/entitlement to something as bringing
about their commitment/entitlement to something else. And while it
is easily imaginable what it takes to treat somebody as implicitly
committed/entitled to one or more things (in terms of sanctions and
rewards), it is much more complicated to imagine what it would
take to treat her as committed/entitled to at least one of many
things. Moreover, it seems that the form of our actual arguments is
normally based on the single-conclusion notion of inference: as
Tennant (1997, 320) puts it, ‘‘in normal practice, arguments take
one from premises to a single conclusion’’.9 Be it as it may, it is
quasiinferential structures, in contrast to inferential ones, that are
capable of determining any system over a finite set of statements.
Hence if we call a semantic system hS;Vi finite iff S is finite, and if
we call it semifinite iff V is finite, we can claim

THEOREM 5. For every semifinite semantic system hS;Vi there is a
qis hS;‘i that determines it; moreover, if S is finite, then also ‘ is
finite.

PROOF. Let hS;Vi be a semantic system and let V be finite. Let
V={m1,...mm}; and let V* be the set of all valuations of S that do not
belong to V. For every v2V* we construct what we will call the critical
quasiinference in the following way. As m62V; m 6¼ mj for each j=1,...,
m. Hence for each j there is a sentence Aj

m 2S such that mðAj
mÞ 6¼ mjðAj

mÞ;
i.e. such that either (i) mðAj

mÞ ¼ 1 and mjðAj
mÞ ¼ 0, or (ii) mðAj

mÞ ¼ 0 and
mjðAj

mÞ ¼ 1. Assume, for the sake of simplicity, that the sentences in
case (i) are A1

m ; . . . ;Ak
m and the sentences in case (ii) are Akþ1

m ; . . . ;Aw
m .

Let
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A1
m ; . . . ;Ak

m ‘ Akþ1
m ; . . . ;Aw

m

be the m-critical quasiinference. It is obviously the case that this
quasiinference does not exclude any valuation from V; for given any
mj2V, either j£ k, and then mjðAj

mÞ ¼ 0, or j>k, and then mjðAj
mÞ ¼ 1;

and in neither case mj is excluded. On the other hand, the m-critical
quasiinference excludes m; for mðAj

mÞ ¼ 1 when j £ k and mðAj
mÞ ¼ 0

when j>k. Now it is clear that hS;‘i, where ‘ consists of the
m-critical quasiinferences for every m2V*, determines hS;Vi. It is also
clear that if S is finite, then also V* is finite and hence ‘ consists of
only finite number of instances. h

The question which naturally follows now is: what about other
systems? Are semantic systems which are not semifinite also deter-
mined by qis’s? It would seem that many are, but surely not of them
are10 – but we will not go into these questions here. The reason is that
determinedness by a qis is not yet what would make a system infer-
ential in the intuitive sense. Hence we will now try to explicate the
intuitive concept of inferentiality more adequately.

8. FINITE BASES

Let us now return to the enterprise of explication of the question (**):
we have dealt with ‘‘semantics’’, ‘‘determined’’ and ‘‘inferential’’, but
we have so far not tackled ‘‘rules’’. The point is that the idea behind
inferentialism is that it is us, speakers, who furnish expressions, and
consequently languages, with their inferential power – we treat the
statements as inferable one from another (perhaps by taking one to
be committed to the former whenever she is committed to the latter)
and as incompatible with each other. The idea is that we have a finite
number of rules and that a statement is inferable from a set of other
statements if it can be derived from them with the help of the rules.11

This means that we should restrict our attention to inferential
structures of a specific kind, namely those whose relation of inference
is that of inferability by means of a finite collection of inferential rules.
What is an inferential rule? Let us call an ordered pair whose first
constituent is a finite sequence of elements of S and the second an
element of S (finite sequence of elements of S) a (quasi)inference over
S. (Hence if hS;‘Si is a (quasi)inferential structure, then ‘S is a set of
(quasi)inferences.) Now if P is a set (‘‘of parameters’’), then a (P-)
(quasi)inferential rule over S will be an (quasi)inference over S in
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which some elements of S are replaced by elements of P.12 (We will
usually write X ‘ Y instead of the less perspicuous hX;Yi). An in-
stance of a(quasi)inferential rule over S will be any (quasi)inference
over S which can be gained from the rule by a systematic replacement
of the elements of P by the elements of S.

(REF), for example, is an inferential rule:

A ‘ A:

Its quasiinferential form, then, is an example of a quasiinferential
rule:

X ‘ X:

However, more interesting rules emerge only when we assume that
the set of statements is somehow structured. If, for example, for every
two statements A and B there is a statement denoted as A � B, we can
have the pattern

A�B ‘ A

A�B ‘ B

A;B ‘ A�B

establishing A � B as the conjunction of A and B.
So let us assume we have fixed some inferential rules, and the

relation of inference which interests us is the one which ‘derives from’
them. How? We obviously need some way of inferring inferences
from inferences, some metainferences or metainferential rules. Hence
we introduce the concept of meta(quasi)inference over S, which is an
ordered pair whose first constituent is a finite sequence of infer-
ences over S and whose second is an inference over S. A
(P-)meta(quasi)inferential rule over S will be a meta(quasi)inference
over S with some elements of S in its constituents replaced by those of
P. We will separate the antecedent from the consequent of such a rule
by a slash and we will separate the elements of its antecedent by
semicolons. Thus, the metainferential rule constituted by (CUT) will
be written down as follows:

X;A;Y ‘ U;Z ‘ V;A;W=X;Z;Y ‘ V;U;W

Now what we want is that the inference relation derives from the
basic finitely specified inferential rules by means of some finitely
specified metainferential rules: A (quasi)inferential basis is an ordered
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triple hS;R;Mi, where S is a set, R is a finite set of (quasi)inferential
rules over S and M is a finite set of meta(quasi)inferential rules over
S. (Let us assume that all metarules in M have a non-empty ante-
cedent – for metarules with the empty antecedent can be treated
simply as rules and put into R.) The (quasi)inferential structure gen-
erated by hS;R;Mi is the (quasi)inferential structure whose
(quasi)inferential relation is the smallest class of (quasi)inferences
over S which contains all instances of elements of R and is closed to
all instances of elements of M. A (quasi)inferential structure is called
finitely generated iff it is generated by a (quasi)inferential basis. A
semantic system is called finitely (quasi)inferential iff it is determined
by a finitely generated (quasi)inferential structure.

Now it is clear that as far as finite languages are concerned,
(quasi)inferentiality and finite (quasi)inferentiality simply coincide.

THEOREM 6. Every finite (quasi)inferential semantic system is fi-
nitely (quasi)inferential.

PROOF. If the number of statements is finite, then there obviously is
only a finite number of (quasi) inferences non-equivalent from the
viewpoint of the determination of the system. h

The situation is, of course, different in respect to infinite languages.
Take the semantic system constituted by the language of Peano
arithmetic (PA) and the single truth-valuation which maps a state-
ment on truth iff it is true in the standard model. This system is
(trivially) inferential: the needed inferential relation consists of all
inferences which have the empty antecedent and a statement of PA
true in the standard model in the consequent. However, as the class of
statements true within the standard model is not recursively enu-
merable, the semantic system is surely not finitely inferential.

But in fact it seems that inferentiality in the intuitive sense
amounts to more than delimitation by any kind of a finitely infer-
ential system. The inference relation of the systems we aim at should
be derived from the basic inferential rules not by just any metain-
ferential rules, but in a quite specific way. If R is a set of inferential
rules, then we want to say that A is inferable, by means of R, from X
iff there is a sequence of statements ending with A and such that each
of its element is either an element of X or is the consequent of an
instance of a rule from R such that all elements of the antecedent
occur earlier in the sequence. (REF is, strictly speaking, an inferen-
tial, rather than a metainferential rule. But we can regard it as a
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metainferential rule with an empty antecedent.) This amounts to M
consisting of the five Gentzenian structural rules. Indeed, A is infer-
able from X by means of R if and only if the inference X ‘ A is
derivable from R by these rules. h

THEOREM 7. A is inferable from X by means of the rules from R
(in the sense that there exists a ‘proof’) just in case X is inferable from
R by means of REF, CON, EXT, PERM and CUT.

PROOF. As the proof of the inverse implication is straightforward,
let us prove only the direct one. Hence let A be inferable from X. This
means that there is a sequence A1,. . .,An of statements such that
An=A and every Ai is either an element of X or is inferable by a rule
from R from statements which are among A1,. . .,Ai-1. If n=1, then
there are two possibilities: either A2X* and then X ‘ A follows from
REF by EXT; or A is a consequent of a rule from R with a void
antecedent, and then ‘ A and hence X ‘ A due to EXT. If n>1 and
An is inferable from some Ai1

,. . .,Aim
by a rule from R, then

Ai1 ; . . . ;Aim ‘ A, where X ‘ Aij for j=1,. . .,m. Then X; . . . ;X ‘ A due
to CUT, and hence X ‘ A due to PERM and CON. h

This leads us to the following definition: We will call a
(quasi)inferential basis standard iff R contains REF and M contains
CON, EXT, PERM and CUT (hence if the (quasi)inferential basis is
standard, then the (quasi)inferential structure which it generates is
standard in the sense of the earlier definition). And we will call it
strictly standard iff, moreover, M contains no other rules. A
(quasi)inferential structure will be called strictly standard if it is
generated by a strictly standard (quasi)inferential basis. (Hence every
standard, and especially every strictly standard inferential structure is
finitely generated.)

It seems that in stipulating inferences we implicitly stipulate also
all the inferences which are derivable from them by the structural
rules – hence we should be interested only in structures which are
strictly standard, or at least standard. It might seem that it is strictly
standard inferential systems which are the most natural candidate for
the role of the explicatum of an ‘‘inferential semantic system’’;
however, the trouble is that no finitely inferential system (and hence
surely no standardly inferential one) is capable of accommodating the
simplest operators of classical logic.

Though it is possible to fix the usual truth-functional meaning of
the classical conjunction by means of the obvious inferential pattern,
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the same is not possible, for reasons sketched earlier (§6), for the
classical negation and nor for the classical disjunction and implica-
tion. What is possible is to fix the truth-functional meanings of all the
classical operators by means of quasiinferential patterns, e.g. in this
way:

A;:A ‘
‘ A;:A
A ‘ A�B
B ‘ A�B
A�B ‘ A;B
B ‘ A! B
A;A! B ‘ B
‘ A;A! B

Hence (as discovered already by Gentzen) all of classical logic is
strictly standardly quasiinferential. Nevertheless, it is not strictly
standardly inferential.

For an inferentialist, this situation need not be too embarrassing
even if she wants to restrict herself to single-conclusion inferences. I
have independent reasons, she might claim, to believe that the only
(primordial) way to furnish an expression with a meaning is to let it
be governed by inferential rules; so if there are ‘meanings’ which are
not conferable in this way, they are not meanings worth the name.
But things are not this simple. We have seen that many meanings of a
very familiar and seemingly indispensable kind fall into the non-
inferential category. Classical negation or disjunction; not to mention
the standard semantics for arithmetic. Is the inferentialist saying that
these are non-meanings?

To be sure, the inferentialist may defend the line that the only
‘natural’ meanings are the straightforwardly inferential ones; and
that all the others are late-coming products of our artificial language-
engineering. She might claim that the only ‘natural’ logical constants
are some which are delimitable inferentially (presumably the intui-
tionist ones), and that the classical ones are their artificial adjust-
ments available only after metalogical reflections and through explicit
tampering with the natural meanings.

However, if she does not want to let classical logic go by the board
in this way, she appears to have no choice but to settle for (strictly
standardly) quasiinferential systems. The latter, as we saw, are strong
enough for the classical operators, but as pointed out above, there are
reasons to see the multiple-conclusion sequents as less natural than
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the single-conclusion ones. Fortunately there is a sense in which every
strictly standardly quasiinferential system can be regarded as a
(standardly) inferential system, so we may after all enjoy some
advantages of the quasiinferential systems without officially admit-
ting the multi-conclusion sequents.

9. THE EMULATION THEOREM

What exactly we will show now is that for every strictly standardly
quasiinferential system there exists a standardly inferential system
with the same class of inferences (and hence especially tautologies).
First, however, we need some more definitions: If X ‘ A1; . . . ;An is a
quasiinferential rule over S, then its emulation will be the metain-
ferential rule YA1Z ‘ B; . . . ; YAnZ ‘ B=YXZ ‘ B (if n=0, i.e. if the
rule is of the shape X ‘, then the antecedent of the emulation is
empty). An emulation of a quasiinferential basis hS;R;Mi will be the
inferential basis hS;R0;M0i such that R¢ is the set of all those elements
of R which are inferential (i.e. not quasiinferential) rules, and M¢ is
the union of the set of restrictions of all elements of M to inferences
proper and the emulations of all elements of R which are proper
quasiinferential rules.

Now we are going to prove that an emulation of a strictly standard
quasiinferential basis hS;R;Mi generates an inferential structure
which is identical to the structure which results from taking the qis
generated by hS;R;Mi and dropping all genuine quasiinferences:

THEOREM 8. The emulation of a strictly standard quasiinferential
structure is its strong restriction.

PROOF. Let hS;‘Si be the quasiinferential structure generated by
hS;R;Mi and let hS;‘�Si be the inferential structure generated by
hS;R0;M0i. What we must show is that for every sequence X of ele-
ments of S and every element A of S it is the case that X ‘S A iff
X ‘�S A. Let us consider the inverse implication first. As R¢ is a subset
of R, it is enough to show that every metainferential rule from M¢
which is not an element ofM preserves ‘S, i.e. that for every such rule
X1 ‘ A1; . . . ;Xn ‘ An=X ‘ A it is the case that if X1 ‘S A1; . . . ;
Xn ‘S An, then also X ‘S A. However, each metainferential rule
which is an element of M¢ but not of M must be, due to the definition
of the former, an emulation of a quasiinferential rule from R, i.e.
must be of the form YA1Z ‘ B; . . .; YAnZ ‘ B / YXZ ‘ B, where
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X ‘ A1; . . . ;An belongs to R. Hence what we have to prove is that if
X ‘ A1; . . . ;An belongs to R (and hence X ‘S A1; . . . ;AnÞ
andYA1Z ‘S B; . . . ;YAnZ ‘S B, then YXZ ‘S B. But this easily fol-
lows from the standardness of ‘S – if n=0, then simply by (EXT),
and if n>0, then in the following way:

X ‘S A1; . . . ;An assumption
YA1Z ‘S B assumption
YXZ ‘S BA2; . . . ;An (CUT)
. . .
Y . . .YXZ . . .Z ‘S B . . .B (CUT)
YXZ ‘S B (PERM) and (CON)

Hence if X ‘�S A, then X ‘S A.
The proof of the direct implication, i.e. of the fact that if X ‘S A,

then X ‘�S A, is trickier. We will prove that if X ‘S A1; . . . ;An and
YA1Z ‘�S B,. . . ;YAnZ ‘� B, then YXZ ‘�S B. From this it follows that
if X ‘S A and YAZ ‘�S B, then YXZ ‘�S B; and in particular that if
X ‘S A and A ‘�S A, then X ‘�S A; and as A ‘�S A due to (REF),
X ‘S A entails X ‘�S A.

First, we will need some notational conventions. If X=A1,...,An

then we will use

X ‘‘�S Y

as a shorthand for

A1 ‘�S Y; . . . ;An ‘�S Y:

Moreover,

½U�X½V� ‘‘�S Y

will be the shorthand for

UA1V ‘�S Y; . . . ;UAnV ‘�S Y

Hence now what we need to prove is that for every X and A1,..., An

such that X ‘S A1; . . . ;An, it is the case that YA1Z ‘�S B; . . . ;
YAnZ ‘� B entail YXZ ‘�S B for every Y, Z and B. We will proceed
by induction. First, assume that X ‘ A1; . . . ;An belongs to R. Then if
n „ 1, then M¢ contains its emulation, i.e. the metainferential rule
YA1Z ‘ B; . . .,YAnZ ‘ B=YXZ ‘ B. This means that if YA1Z
‘�S B; . . . ; YAnZ ‘�S B, then indeed YXZ ‘�S B. If, on the other hand,
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n=1, then X ‘ A belongs to R¢ and hence X ‘�S A; and the fact that
YAZ ‘� B entails YXZ ‘� B follows by (CUT).

Now assume that X ‘ A1; . . . ;An is the result of an application of
a metaquasiinferential rule from M. As hS;R;Mi is strictly stan-
dard, the only possibilities are CON, EXT, PERM and CUT. We
will prove only the less perspicuous case of CUT. Hence assume
that X ‘ A1; . . . ;An can be written in the form X;Z;Y ‘S V;U;W so
that

X;A;Y ‘S U; and ‘S V;A;W;

and, by induction hypothesis, that

1. ½M�U½N� ‘‘�S B entailsM;X;A;Y;N ‘�S B, and
2. ½M�V;A;W½N� ‘‘�S B entails M;Z;N ‘�S B.

What we want to prove is that then ½M�V;U;W½N� ‘‘�S B entails
M;X;Z;Y;N ‘�S B. Hence assume that ½M�V;U;W½N� ‘‘�S B. This is
to say, we assume

3. ½M�V½N� ‘‘�S B,
4. ½M�U½N� ‘‘�S B, and
5. ½M�W½N� ‘‘�S B.

3. and 5. yield, via (EXT),

6. ½M;X�V½Y;N� ‘‘�S B, and
7. ½M;X�W½Y;N� ‘‘�S B;
whereas 4. and 1. yield

8. M;X;A;Y;N ‘�S B.
Now 6, 7 and 8 together amount to

9. ½M;X�V;A;W; ½Y;N� ‘‘�S B,
from which we get

M;X;Z;Y;N ‘� B

via 2. h

COROLLARY. For every strictly standardly quasiinferential system
there exists a standardly inferential system with the same class of
inferences. Hence especially for every such system there exists a
standardly inferential system with the same class of tautologies.
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10. AN EXAMPLE: CLASSICAL PROPOSITIONAL LOGIC IN THE LIGHT OF

INFERENCES

We saw that not even the classical propositional logic (CPL) is
inferential in the sense that there are inferences which can delimit the
very class of truth-valuations that is constituted by the usual explicit
semantic definition of CPL. However, the corollary we have just
proved tells us that there is a standard inferential structure which,
while not determining the semantics of CPL, does determine a
semantic system possessing the same class of tautologies. Which
inferential structure is it?

It is easy to see that if we base CPL on the primitive operators
: and �, the semantics of CPL is determined by the following
quasiinferential rules:

ð1ÞA�B ‘ A
ð2ÞA�B ‘ B
ð3ÞA;B ‘ A�B
ð4ÞA;:A ‘
ð5Þ ‘ A;:A

What we must do is to replace the genuine quasiinferential rules (i.e.
those not having exactly one single statement in the consequent, (4)
and (5)) with their emulations. This is to say that we must replace (4)
and (5) by

ð40ÞA;:A ‘ B
ð50ÞX;A ‘ B;X;:A ‘ B=X ‘ B

Note that in view of the fact that (1), (2), (3), (4¢) and (5¢) constitute a
possible axiomatization of CPL, the fact that they determine the
tautologies of CPL amounts to the completeness result for the logic.
But it is, in a sense, more general than the usual one and it throws
some new light on the fact that the axioms of classical logic, despite
their completeness, do not pin down the denotations of the operators
to the standard truth-functions. (The point is that the axioms are
compatible even with some non-standard interpretations – with
negations of some falsities being false and with disjunctions of some
pairs of falsities being true. What is the case is that if the axioms hold
and if the denotations of the operators are truth functions, then they are
bound to be the standard truth functions. But the axioms are com-
patible with the indicated non-truth-functional interpretation of the
constants.13) From our vantage point we can see that classical logic is
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complete in the sense that its axioms determine a semantics with the
class of tautologies which is the same as that of the standard
semantics of CPL; that they, however, do not determine this very
semantics.

Let us give some illustrations of how proofs within (1)–(5) get
emulated by those within (1)-(3), (4¢) and (5¢). Consider the inference

::A ‘ A;

which is valid in CPL. With (4) and (5) it can be proved rather easily:

1. :A;::A ‘ ð4Þ
2. ‘ A;:A ð5Þ
3. ::A ‘ A from 1 and 2 by (CUT)

This gets emulated as follows:

1. ::A;:A ‘ A fromð40Þ by(PERM)
2. ::A;A ‘ A from (REF) by (EXT)
3. ::A ‘ A from 1, 2 by ð50Þ
Or consider the proof of the theorem
:ðA�:AÞ

1. A�:A ‘ A ð1Þ
2. A�:A ‘ :A ð2Þ
3. A;:A ‘ ð4Þ
4. A�:A ‘ from 1, 2 and 3 by (CUT) and(CON)
5. ‘ A�:A;:ðA�:AÞ ð5Þ
6. ‘ :ðA�:AÞ from 4 and 5 by (CUT)

The emulation now looks as follows:

1. A�:A ‘ A ð1Þ
2. A�:A ‘ :A ð2Þ
3. A;:A ‘ :ðA�:AÞ ð40Þ
4. A�:A ‘ :ðA�:AÞ from 1, 2 and 3 by (CUT) and (CON)
5. :ðA�:AÞ ‘ :ðA�:AÞ (REF)
6. ‘ :ðA�:AÞ from 4 and 5 by ð50Þ

This means that classical logic may be seen as inferential, though
in a rather weak sense: there is no inferential way of delimiting its
very space of acceptable truth-valuations; however, there is a way of
delimiting a space of truth valuations which is equivalent to it w.r.t.
tautologies (and more generally single-conclusion inferences).
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11. EXTREMALITY CONDITIONS

Hence what seems to be a good candidate for the explication of the
intuitive concept of ‘‘inferential semantics’’ is the concept of stan-
dardly inferential semantic system, i.e. a system generated by a col-
lection of inferential and metainferential rules containing the
Gentzenian structural rules. This is obviously of a piece with the ideas
of the natural deduction program (Prawitz 1965; Tennant 1997; etc.)
and so it would seem that the inferentialist agenda should display a
large overlap with the agenda of this program. We have also seen that
there is a direct way from the natural quasiinferential characteriza-
tion of structural operators to their superstandardly inferential
characterization.

Let us consider disjunction. A�B is partly characterized by the
inferential rule

A ‘ A�B

B ‘ A�B

but the characterization has to be completed by the genuine quasi-
inferential rule

A�B ‘ A;B

This rule gets emulated as

A ‘ C;B ‘ C=A�B ‘ C

which yields us the metainferential characterization of disjunction
well-known from the systems of natural deduction. Note that the
metainferential rule can be looked at as a ‘‘maximality condition’’.
Let us say that the statements A, B, C fulfill the condition F(A, B, C)
iff A ‘ C and B ‘ C. Then A�B can be characterized in terms of the
following two conditions:14

(i) UðA;B;A�BÞ; and
(ii) A�B is the strongest statement such that F(A, B, C); i.e.

A�B ‘ C for every C such that F (A, B, C)

Why is this interesting? Because this kind of maximality condition
could perhaps be seen as implicit to the statement of an inferential
pattern. When we state that A ‘ A�B and B ‘ A�B and when we,
moreover, put this forward as an (exhaustive) characterization of
A�B, we insinuate F(A, B, ...) is fulfilled by A�B and nothing else.
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However, it is clear that if A�B fulfills F(A, B, ...), then everything
weaker (i.e. entailed by A�B) does, so the ‘‘nothing else’’ can only
mean ‘‘nothing non-weaker’’ – hence it means that for every such
statement C it must be the case that A�B ‘ C.

Imagine I am asked what children I have – i.e. to characterize
the class of my children – and I answer ‘‘I have a son and a
daughter’’. Strictly speaking I am not giving a unique character-
ization of the class – I am only stating that this class contains a
boy and a girl. But as it is normally expected that what I say
should yield an exhaustive characterization, my statement would be
taken to imply (by way of what Grice called a conversational
implicature) that the class in question is the maximal one fulfilling
the condition I state. And a similar maximality implicature can be
seen as insinuated by my stating that F is the pattern characteristic
of disjunction.

More to the point, this train of thought appears also to motivate
Gentzen’s insistence that it is only introductory rules which seman-
tically characterize the operators. As Koslow (1992, Section 2.1)
shows, it is natural to see it precisely in terms of extremality con-
ditions: the introduction rule yields the elimination rule via the
assumption that the introduction rule gives all that there is to the
‘inferential behavior’ of the connective. Hence it seems that we can,
after all, delimit the classical disjunction by an inferential pattern –
if we assume the maximality implicature. This indicates that instead
of allowing for the non-structural metainferential rules (which
amounts to passing over from strictly standard to merely standard
inferential structures) we could perhaps admit that stating an
inferential pattern involves stating the maximality of the operator
fixed by the pattern.

Can we see all the other classical logical operators analogously?
Gentzen (1934) himself gives the example of implication: A fi B is
the maximal statement which holds whenever B is derivable from A.
So here F(A, B, C) would be

A
:
B
C

Alternatively, we can characterize implication as the minimal opera-
tor fulfilling

A;A! B ‘ B
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i.e. as an operator fulfilling this and, moreover

A;C ‘ B=C ‘ A! B

But, does not the replacement of maximality by minimality spoil the
intuitive picture outlined above, where maximality reflected exhaus-
tiveness? Not really; for as A fi B is now within the antecedent of the
basic pattern, exhaustiveness comes to yield not maximality, but
minimality. The basic pattern now reads:

A fi B is such that together with A it entails B.

And assuming exhaustivity,

A fi B, and nothing else, is such that together with A it entails B.

Now it is clear that if something follows from A fi B, then it
follows from anything stronger, so the ‘‘nothing else’’ makes sense
only as ‘‘nothing non-stronger’’. Hence the exhaustivity boils down to

if C does the same, then it is stronger, i.e. C ‘ A! B:

We can also characterize conjunction as the maximal operator
fulfilling

C ‘ A

C ‘ B:

Negation, if we want it to be classical, is unfortunately more fishy. It
seems that the only pattern available is

A;C ‘ B

:C ‘ A:

which itself contains the negation sign to be determined; and this
appears to largely spoil the picture. Is there a remedy?

We could, perhaps, trade the second part of the negation-pattern,
i.e. the law of double negation, for something else – e.g. for the
‘‘external’’ assumption that all our operators are truth-functional. It is
clear that the only truth-function which always maps a statement on
its maximal incompatible is the standard negation (see Peregrin 2003
for more details). But a more frank solution would be to simply strike
out the law of double negation without a substitute. What would be
the result? Of course the intuitionist negation and consequently the
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intuitionist logic. This indicates, as I have discussed in detail elsewhere
(see Peregrin 2004a), that it is intuitionist logic that is the logic of
inference. In this sense, classical logic is not natural from the infer-
entialist viewpoint (however, its unnaturalness from this viewpoint is
outweighed – and maybe overridingly so – by its simplicity).

12. CONCLUSION

Arguing for inferentialism, we must first specify what exactly we mean
by the term: there are several options. In this paper I have tried to
indicate that two of the options can be merged into a single one,
which, in its turn, is the hottest candidate for becoming the inferen-
tialism. The winner is the ‘‘superstandard inferentialism’’, capable of
‘emulating’ and hence treatable as encompassing ‘‘standard quasiin-
ferentialism’’. On the technical side, it comes down to the framework
of natural deduction. (Its immediate stricter neighbor, ‘‘standard
inferentialism’’ is obviously much too weak; while the stronger
‘‘quasiinferentialism’’ appears to be less natural.)

If we accept this, then we should also see intuitionist logic as the
most natural logic. However, as we have taken pains to indicate, this
does not preclude the way to classical logic, which is surely natural in
some other respects and whose utter inaccessibility would be, I be-
lieve, a failure of inferentialism. Inferentialism is a descriptive project
concerned with the question what is meaning?; whereas the natural
deduction program is more a prescriptive program concerned with the
question How should we do logic?. Thus while the latter could perhaps
simply ban classical logic if it concluded that one can make do
without it, the former is bound to take the extant meanings at face
value and face the question If meaning is an inferential matter, then
how could there be meanings that are prima facie ‘‘non-inferential’’?
Hence I think that inferentialism, though it may ‘‘favor’’ some
meanings over others, does not result in any unnatural ‘‘semantic
asceticism’’. I am convinced that the thesis that all meanings are –
more or less direct – creatures of inferences is viable.
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NOTES

1 See also Lance (1996, 2001) and Kalderon (2001).
2 See Peregrin (in press-b) for more details.
3 As was pointed out to me by Michael Kremer.
4 To be precise, we now have different truth-valuations, since now we are evaluating
three instead of two statements. So ‘‘expressing {1}’’ should be read as ‘‘expressing a
truth-valuation which yields {1} when restricted to {A,B}’’.
5 Consider the recurring discussions about substitutional vs. objectual quantifica-
tion. The basic problem would seem to be that we simply cannot assume that all
entities (including those not known to anybody) within our universe must have

names. But this is a red herring (independently of whichever side of the quarrel we
stand), for what the proponent of substitutional quantification needs to assume is
not that every entity is named, but that it is nameable – in the sense that language has
the resources to form a name as soon as it becomes needed (cf. Lavine 2000).
6 Moreover, it can be shown that each standard gis such that there is a function f
mapping sentences on sentences so that for every X, A and B, ?A, f(A) and if
X,A ‘ B and X, fðAÞ ‘ B, then X ‘ B, is perfect. (This is important for f is the usual

proof-theoretic notion of negation.) I owe this observation to Michael Kremer.
7 Obviously in the case of such extensional languages as those of the predicate
calculus, the constraints exclude all valuations save a single one. However, this is

clearly not be the case for any natural language.
8 Of course when dealing with empirical terms and empirical languages, then we need
a way to ‘‘connect them with the world’’ – hence we need either a trusted meta-

language capable of mediating the connection, or else a direct connection which,
however, can be established only practically.
9 This is not supposed to be a knock-down argument against the multiple-conclu-
sion inference (see, e.g., Restall in press, for a defense). However, naturalness clearly

is on the side of the single-conclusion one.
10 A simple example was suggested to me by the referee of this paper: Suppose V
consists of all valuations which make only a finite number of sentences of the infinite

set S true. Then there is obviously no quasiinference which would exclude an
unacceptable valuation without excluding also an acceptable one.
11 Note that this does not mean that we have to be aware of all the rules binding

us: the rules we adopt engender other rules and we do not have to foresee all the
consequences.
12 Note that we do not require that any particular sentences are replaced by
parameters – hence it is even possible for a rule to contain no parameters whatsoever.
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Hence we do not require that rules be purely ‘‘formal’’; and the fact that in what
follows we will deal especially with rules of this kind should be seen as a matter of the

fact that we will restrict our attention to the semantics of logical constants. The rules
of inference underlying the semantics of other expressions will surely be non-formal.
13 This is a fact noted already by Carnap (1943) but rarely reflected upon – see

Koslow (1992, Chapter 19), for a discussion.
14 This form is borrowed from Koslow (1992), whose book offers a thorough dis-
cussion of the technical side of the issues hinted at in this section.
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