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Introduction

Contemporary theories of meaning can be divided, with a certain amount of
oversimplification, into those which see the meaning of an expression as prin-
cipally a matter of what the expression denotes or stands for, and those which
see it as a matter of how the expression is used. A prominent place among the
latter ones is assumed by those which identify the semantically relevant
aspect of the usage of an expression with an inferential pattern governing it.
According to these theories, the meaning of an expression is, principally, its
inferential role.1

In this paper we first propose an exact definition of the concept of infer-
ential role, and then go on to examine the question whether subscribing to
inferentialism necessitates throwing away existing theories of formal seman-
tics, as we know them from logic, or whether these could be somehow acco-
modated within the inferentialist framework. The conclusion we reach is that
it is possible to make an inferentialist sense of even those common semantic
theories which are usually considered as incompatible with inferentialism,
such as the standard semantics of second-order logic.

Primary inferential roles (of sentences)

Let us use the sign > for correct inferrability (we will also use the term entail-
ment). Thus, if X is a set of sentences and S a sentence, we will write X > S to
express that X entails S. Besides entailment, we may consider one other
important inferential property of sets of sentences (which, as we will see later,
may or may not be seen as reducible to entailment), namely incompatibility.
Let us write IC(X) to express that nobody can be entitled to all elements of X.
Let us, moreover, write X ⊥ S as a shorthand for IC(X ∪ {S}).2
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1 See especially Brandom (1994; 2000) for the ideological background and Lance (1996; 2001)
and Kaldernon (2001) for some more technical aspects. See also Peregrin (2001; esp. Chapters 7
and 8) and Peregrin (to appear).
2 The notation is partly due to Lance (2001).
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We will assume that entailment has the following basic properties (we
shorten {S1, …, Sn} > S to S1, …, Sn > S):

[R] S > S
[T] if X > S and {S} ∪ Y ⇒ S ′, then X ∪ Y ⇒ S ′
[M] if X > S, then X ∪ {S ′} > S

Moreover, there is the following relationship between entailment and
incompatibility:

[*] if X > S and IC(Y ∪ {S}), then IC(Y ∪ X)

This means that something is incompatible with the consequent of an
entailment, it is bound to be incompatible also with its antecedent.

We may also consider reducing incompatibility to entailment by the well
known ‘ex falso quodlibet’ axiom:

[**] X ⊥ S iff X ∪ {S}> S ′

Now with this notational apparatus, what we will call the primary infer-
ential role of a sentence S can be exhaustively characterized by the following
four sets:

conditions of S: S ← = {X | X > S}
consequences of S: S → = {〈X,S ′〉 | X ∪ {S} > S ′}
contradicta of S: S × = {X | X ⊥ S}

Hence as a first approximation, we can set

PIR(S) ≡Def 〈S ←, S →, S ×〉

We define the inclusion of PIR’s as the inclusion of their respective compo-
nents

PIR(S1) ⊆ PIR(S2) ≡Def S1
← ⊆ S2

← and S1
→ ⊆ S2

→ and S1
× ⊆ S2

×

and we define the relation PIR of sameness of primary inferential roles:

S1 PIR S2 ≡Def PIR(S1) = PIR(S2).

We will now prove that two sentences have the same PIR iff they are logical-
ly equivalent. First a lemma (where <> is the relation of logical equivalence,
i.e. the relation which holds between S1 and S2 just in case S1 > S2 and S2 > S1):

Lemma: If S1 <> S2, then PIR(S1) ⊆ PIR(S2)

Proof: Let S1 <> S2. Then
1. If X > S1, then X > S2 (from S1 > S2 by [T]).
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2. If X ∪ {S1} > S ′, then X ∪ {S2} > S ′ (from X ∪ {S2} > S1 by [T], which
from S2 > S1 by [M]).

3. If X ⊥ S1, then X ⊥ S2 (from S2 > S1 by [*]). 

It obviously follows that if S1 and S2 are logically equivalent, they share
the same PIR; for if S1 <> S2, then PIR(S1) ⊆ PIR(S2) and PIR(S2) ⊆ PIR(S1),
i.e. S1 PIR S2. The next simple lemma shows that the converse implication also
holds:

Lemma: If S1 PIR S2, then S1 <> S2.

Proof: S1 ∈ S1
← (by [R]), hence S1 ∈ S2

←, hence S1 > S2; and the same vice
versa.

Combining the two lemmas we get the anticipated result, namely that
S1 PIR S2 iff S1 <> S2.

Admitting some further assumptions about the inferential structure of lan-
guage, we can further simplify the definition of PIR (for the lack of space, we
omit proofs of these facts). Thus, accepting [**] we can reduce contradicta to
consequences,

S × = {X | X ∪ {S} > S ′ for every S ′} = {X | 〈X,S ′〉 ∈ S → for every S ′},

and PIR(S) becomes uniquely determined by S → and S ←.
If we assume that for every statement S there exists a ‘minimal incompat-

ible’ MI(S) such that MI(S) ⊥ S and if X ⊥ S, then X > MI(S), then it can be
shown that we can reduce contradicta to conditions of the minimal incompat-
ible: 

S × = {X | X > MI(S)} = MI(S)←

Moreover, there is a sense in which we can reduce consequences to con-
ditions (where X ← is the set of sets of sentences entailing all elements of X):

S → = {〈X,S ′〉 | S ← ⊆ X ← ∪ S ′←}

Secondary inferential roles

Primary inferential roles are a matter of sentences only. Hence if we want to
apply inferentialism also to subsentential expressions, we have to find a con-
cept of an inferential role which would be applicable to them too. Therefore
we introduce the concept of secondary inferential role, which we will not
define explicitly, but only via the relation of sameness. If E1 and E2 are expres-
sions, then we will call two sentences S and S ′ [E1/E2]-variants iff S ′ differs
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from S only in that some the occurrences of E1 are replaced by E2. Then we
define the sameness of secondary inferential roles as follows:

E1 SIR E2 ≡Def S PIR S ′ for every [E1/E2]-variants S and S ′

Thus, SIR’s are ‘what SIR-equivalent expressions have in common’. In other
words, an SIR of an expression is the contribution which the expression
brings to the primary inferential roles of the sentences in which it occurs. 

Now sentences have two kinds of inferential roles, PIR’s and SIR’s. Are
they different? Though in general they are,3 we will characterize the class of
languages for which they may be seen as coinciding. Let us call a language at
most intensional (i.e.: not ‘hyperintensional’) iff for every two sentences S1

and S2 and every two [S1/S2]-variants S and S ′, S1 <> S2 implies S <> S ′.

Claim: A language is at most intensional iff for every two sentences S1 and
S2, S1 SIR S2 iff S1 PIR S2.

Proof: Let us first consider a language which is at most intensional. The
‘only if’ part is trivial. Let S1 PIR S2 and let S and S ′ be [S1/S2]-variants. Then
S1 <> S2, and as the language is at most intensional, S <> S ′. But this means
that S PIR S ′, and hence S1 PIR S2.

Now consider a language which is not at most intensional. Then there are
some S1, S2 and some [S1/S2]-variants S and S ′ such that S1 <> S2, whereas not
S <> S ′. This means that S1 PIR S2, but not S1 SIR S2.

This means that if we restrict ourselves to languages which are at most
intensional, we can identify the SIR of a sentence with its PIR. The SIR of a
subsentential expression can then be seen as the contribution the expression
brings to the inferential roles of the sentences in which it occurs.

Inferential patterns

The crucial claim of inferentialism is that the inferential role of every expres-
sion is determined by some finite inferential pattern. (The idea is that to grasp
the meaning of the expression is just to master the inferential pattern, and so
the pattern must be something humanly masterable, i.e. finite.) However,
what is an inferential pattern?

As a first approximation, we will identify such a pattern with a finite set
of (possibly parametric) instances of inference, such as
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3 Note that the distinction between the PIR of a sentence and its SIR is the inferentialist embod-
iment of Dummett’s (1973) distinction between the “freestanding sense” and the  “ingredient
sense”.
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Cat(Tom), Mouse(Jerry) > Cat(Tom) ∧ Mouse(Jerry)

or 

S1, S2 > S1 ∧ S2.

Note that we do not claim that the inferential role of an expression must be
specifiable independently of those of other expressions – an inferential pattern
may well characterize the role of an expression only relatively to those of
some other expressions (which then implies that the language cannot possess
the former without possessing the latter).4 Note also that in no way do we
maintain the claim that any inferential pattern is as good as any other in fur-
nishing an expression with a viable meaning (i.e. the claim attacked by Prior,
1960/61).5

Let us take an example. We may characterize the inferential role of the
sentence Cat(Tom) ∧ Mouse(Jerry) by the following pattern:

Cat(Tom), Mouse(Jerry) > Cat(Tom) ∧∧  Mouse(Jerry)
Cat(Tom) ∧∧  Mouse(Jerry) > Cat(Tom)
Cat(Tom) ∧∧  Mouse(Jerry) > Mouse(Jerry)

Expressed in terms of positive conditions, this yields

Cat(Tom)← ∩ Mouse(Jerry)← ⊆ Cat(Tom) ∧ Mouse(Jerry)←

Cat(Tom) ∧ Mouse(Jerry)← ⊆ Cat(Tom)← ∩ Mouse(Jerry)←

and hence 

Cat(Tom) ∧ Mouse(Jerry)← = Cat(Tom)← ∩ Mouse(Jerry)←

In fact, in this way we only reduce the inferential role of Cat(Tom) ∧
Mouse(Jerry) to those of its components, namely Cat(Tom) and Mouse(Jerry);
so this definition works only if we already have the inferential roles of the two
atomic sentences.6

As a further example, let us consider the inferential role of ∧, which obvi-
ously derives from that of S1 ∧ S2 with parametric S1 and S2. The pattern is, of
course,
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4 Take arithmetic: the roles of all its constants are inextricably characterized by Peano’s axioms.
5 See Peregrin (2001, §8.5) for more details.
6 What, then, would be the role of an atomic sentence, such as Cat(Tom)? Well, if we want Cat
and Tom mean approximately what they do in English, then to understand them inferentialisti-
cally, we would have to somehow broaden the concept of inference to comprise not only the ‘lan-
guage-language’ instances, but also some ‘world-language’ instances (see Peregrin, 2001, §7.6).
Of course the inferentialist does not aspire to reduce meanings of empirical expressions to infer-
ences in the usual, ‘language-language’ sense – such inferences, though vital for any kind of
meaning, exhaust only meanings of non-empirical, especially logical, expressions.
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S1, S2 > S1 ∧ S2

S1 ∧ S2 > S1

S1 ∧ S2 > S2

This yields

S1 ∧ S2
← = S1

← ∩ S2
←

Unlike in the previous case, this is not a reduction, but rather a full specifica-
tion of the inferential role: ∧ is characterized as an expression which com-
bines two sentences into a complex sentence with positive conditions equal to
the intersection of the positive conditions of its two components.

Now consider ∨. Part of the inferential pattern characterizing it is clear:

S1 > S1 ∨ S2

S2 > S1 ∨ S2

But we want also the disjunction to be true only if at least one of its disjuncts
is true. If we may make use of negation, then we can complete the pattern by

¬S1, ¬S2 > ¬(S1 ∧ S2)

yielding the desired 

S1 ∨ S2
← = S1

← ∪ S2
←,

but this presupposes that we have already established the inferential role of
negation. However, there is obviously no way of articulating the inferential
role of negation, and consequently disjunction, by means of what we have so
far called an inferential pattern.7

A reaction to this might be to say that hence the classical operators are not
accessible for the inferentialist (the worse for them!, from the inferentialist
standpoint), but we will indicate that a generalization of the concept of an
inferential pattern, which is not too unnatural, will allow us to make inferen-
tial sense even of them. (For lack of space we will say nothing about the log-
ical constants specific to predicate logic, i.e. quantifiers.)

Jaroslav Peregrin198

7 It might seem that an inferential specification of the meanings of the logical operators is pro-
vided already by the standard axiomatics of the propositional calculus. Does it not follow from
the soundness and completeness of the calculus that the axioms pin down the denotations of the
operators to the usual truth functions? In fact, it does not. As a matter of fact, the axioms are com-
patible with some non-standard interpretations of the operators – with negations of some falsities
being false and with disjunctions of some pairs of falsities being true. What is the case is that if
the axioms hold and if the denotations of the operators are truth functions, then they are bound
to be the standard truth functions. But the axioms are compatible with the indicated non-truth-
functional interpretation of the constants. This is a fact noted already by Carnap (1943), but very
rarely reflected (see Koslow, 1992, Chapter 19, for a discussion).
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Truth tables and inferential patterns

Our goal, then, will now be to provide a way of reading the rows of the truth
table characterizing any of the usual logical operators as generally recapitu-
lating inferential patterns governing the operator. This is straightforward in
some cases, but rather more tricky in others. We will consider general types
of rows in a possible truth table and try to provide their ‘translation’ into
instances of inference (note, however, that from the inferentialist viewpoint
this will not be a translation, but rather a case of archeology—retrieving the
patterns lying beneath the tables).8

Method 1.  True arguments → true value

First, consider a row with only T’s both in the argument columns and in the
value column. Here the inferentialist reading is, of course, quite straightfor-
ward: the row states that the complex sentence is entailed by all its arguments:

S1, …, Sn > O(S1, …, Sn)

Example

S1, S2 > S1 ∧ S2

Method 1 (generalized). True or arbitrary arguments → true value

This can obviously be generalized to clusters of rows with T in the value
columns, T’s in some fixed argument columns and all possible combinations
of values in the other argument columns. Let us introduce the convention of
putting as asterisk into the argument column whose content is irrelevant for
the content of the value column:

Meaning and Inference 199

8 Note also that what we are after is something quite different from the fact underlying the most
usual proof of the completeness of the classical propositional calculus due to Kalmár (1936),
namely that using negation and implication, we can express every row of every table as a theo-
rem of the predicate calculus (see, e.g. Mendelson, 1964, §1.4). What we want is to find, for every
table, an inferential pattern featuring the single operator whose semantics is given by the table.

 

S1 ... Sn O(S1,...,Sn) 

T ... T T 

.. ... ... ... 

S1 S2 S1∧S2 

T T T 

.. ... ... 
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Then clearly a row containing only T’s and *’s in the argument columns and T
in the value column also yields an inferential pattern quite straightforwardly:

Si1, …, Sin > O(S1, …, Sn), 
where i1, …, in are the columns containing T
(rather than *)

Example:

S2 > S1 ∨ S2

Method 2. One false argument and others true or arbitrary → false value

An inferential pattern is also easily seen to be yielded by a row containing pre-
cisely one F in the argument columns and F in the value column:

Si1, …, Sin, O(S1, …, Sn) > Si, 
where i1, …, in are  the columns 
containing T

Example:

S1, S1 → S2 > S2

Jaroslav Peregrin200
 

S1 ... Si-1 Si Si+1 ... Sn O(S1,...,Sn) 

v1 ... vi-1 T vi+1 ... vn v 

v1 ... vi-1 F vi+1 ... vn v 

.. ... .. ... ... ... ... ...  

→ 

S1 ... Si-1 Si Si+1 ... Sn O(S1,...,Sn) 

v1 ... vi-1 * vi+1 ... vn v 

.. ... .. ... ... ... ... ...  

 

S1 ... Sn O(S1,...,Sn)

T/* ... T/* T 

.. ... ... ... 

S1 S2 S1∨S2 

* T T 

.. ... ... 

 

S1 ... Si ... Sn O(S1,...,Sn) 

T/* ... F ... T/* F 

.. ... ... ... ... ... 

 

S1 S2 S1→S2 

T F F 

.. ... ... 
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Method 3. True or arbitrary arguments → false value

For rows containing no F’s in the argument columns, but containing F in the
value column we need to invoke either the concept of incompatibility or
the ‘ex falso quodlibet’ axiom:

Example:

S1, …, Sn ⊥ O(S1, …, Sn),
or S1, …, Sn, O(S1, …, Sn) > S

Example:

S ⊥ ¬S
S,¬S > S ′

Method 4. 

The types of rows for which we have provided ‘translations’ so far still do not
cover all those occurring in the tables of the standard operators: viz. the F F F
row within the disjunction truth table or the F T row within the negation one.
How are we to make inferential sense of them?

Let us look at an inferential pattern for an operator O as a means of enu-
merating all those assignments of truth values to S1, …, Sn for which O(S1, …,
Sn) yields T (or, alternatively, F). Thus, the pattern 

S1 > S1 ∨ S2

S2 > S1 ∨ S2

specifies that S1 ∨ S2 is true if at least one of S1 and S2 is, i.e. for the truth-value
pairs 〈T,F〉, 〈F,T〉 and 〈T,T〉. Similarly 

S1, S1 → S2 > S2

says that S1 → S2 is false if S1 is true and S2 false. Now it is not unnatural to
assume that if one gives an enumeration of cases, it is meant to be exhaustive.
If I say “My children are Tom and Jerry”, then what is normally taken for
granted is that these are all my children. (See McCarthy’s, 1980, discussion of
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S1 ... Sn O(S1,...,Sn)

T/* ... T/* F 

.. ... ... ... 

S ¬S 

T F 

.. ... 
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this feature of our enumerative claims).9 This may suggest that part and parcel
of our ‘enumerative’ claims, and especially of our ‘enumerative’ specification
of  inferential patterns, is what can be called the exhaustivity assumption (EA):

The inferential pattern’s specification of what entails a sentence (or what
is entailed by it) is assumed to be exhaustive; i.e. it is assumed that the
sentence is entailed by (entails) only that which is specified by the pattern.

If this is the case, then it is enough to find a pattern behind all the rows of a
table with T in the value column, or all those with F in this column – EA then
takes care of the rest. 

Consider disjunction. The above inferential pattern can be seen as recapit-
ulated by three of the four rows of its truth table. Now assuming exhaustivity
of this implies that S1 ∨ S2 is true for no other assignment of truth values to S1

and S2, hence that for the truth-value pair 〈F,F〉 it yields F. In other words, the
set of pairs of truth values for which disjunction yields T is the minimal set of
pairs containing all pairs with at least one component being T:

Example1 (minimality):

S1 > S1 ∨ S2

S2 > S1 ∨ S2

if S1 > S and S2 > S, then S1 ∨ S2 > S

Analogously for implication, where the set of pairs of truth values for
which the implication yields T is the maximal set of pairs not containing 〈T,F〉:

Example 2 (maximality):

S1, S1 → S2 > S2

if S1, S > S2, then S > S1 → S2

Jaroslav Peregrin202

9 McCarty’s considerations resulted, in effect, into the conclusion that an intended model of what
we say is always the minimal one, which led him to his concept of circumscription. See Hintikka
(1988) for a further elaboration of this idea.

S1 S2 S1∨S2 

T T T 

T F T 

F T T 

F F F 

S1 S2 S1∨S2 

T T T 

T F T 

F T T 

F F F 
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The conception of logical operators arrived at in this way is in fact that
developed by Koslow (1992): 

To any logical operator ϕ there corresponds a condition Φ such that the
operator assigns to each pair (if the operator acts on pairs) the set of all
items in the [inferential] structure that are the weakest members of all
those that satisfy the condition.

Note that both the truth-functional viewpoint, the reduction of incompati-
bility to entailing everything, and the exhaustivity assumption lead to ‘desired’
results only if the language considered is rich enough. Consider a language
with an explicitly defined truth-functional semantics. In this case, the stipula-
tion S,¬S > S ′ guarantees that the negation of T is F only if the language con-
tains a contradiction. Similarly the stipulation that the disjunction of S1 and S2

is the minimal S for which S1 > S and S2 > S makes the disjunction denote the
usual truth function only if there is an expression denoting the function within
the language at all; otherwise it yields its ‘closest approximation’.

From inferential roles to possible worlds

Let W be the set of all maximal consistent sets of statements (i.e. all such sets
which do not entail a contradiction and are not contained in another noncon-
tradictory set). Let us define the intension of S, S I, in the following way:

S I = {w | w ∈ W and there is an X ∈ S ← so that X ⊆ w}

In this way the inferential roles can be seen as giving rise to possible world
semantics.

An objection to this construction might be that it yields us only a lan-
guage-dependent notion of possible-world. However, as I argued elsewhere
(Peregrin, 1995, §11.5), this is precisely what we should want. The point is
that if we want to use possible worlds for the analysis of meanings, then we
must exempt the language we analyze out of the possible worlds – the asso-
ciation of the expressions with their meanings must be kept fixed across the
space of possible worlds. (Otherwise every statement would come out as true
only contingently.) Hence the space of the possible worlds is to be limited by
what is possible within the framework established by the language – by what
the language ‘takes to be possible’.

But there is a deeper objection which concerns incomplete languages such
as the languages of second-order logic (with standard semantics). In such a
language, there may exist S1, …, Sn, S such that S1, …, Sn entail S, but not 
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S1, …, Sn > S, and hence not S1
I ∩ … ∩ Sn

I ⊆ S I. In this case we may feel we
have ‘too many worlds’. Peano arithmetic, for instance, yields us a world in
which, in contrast to the standard model (which is the only model of the sec-
ond-order Peano arithmetic), the Gödel sentence is not true. Thus, inferential
roles lead us directly always only to Henkin semantics. If inferentialism were
correct, how could standard semantics, and ‘second-order’ consequence come
into being?

It might seem that the inferentialist’s response to this must be that this only
shows that second-order semantics is simply illusory. But this is not the case:
there is a way of making sense even of this kind of semantics within the infer-
entialist framework; and it is even possible to see it, in cases like the Peano
arithmetic, as the semantics (thus vindicating the intuition that the standard
model is the model). We have admitted that inferential patterns may involve
the exhaustivity assumption: and reading the Peano axioms as involving the
EA is precisely what is needed to exclude the non-standard models. If we say
that 0 is a number, the successor of every number is a number, and nothing
else is a number, then obviously we have the unique specification of the stan-
dard natural numbers – it is the EA which is enough to take us from the
Henkin to the standard semantics (cf. Hintikka, 1988; 1989).
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