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Abstract. The paper addresses foundational questions concerning the dynamic semantics of 
natural language based on dynamic logic of the Groenendijko-Stokhofian kind. Discussing a 
series of model calculi of increasing complexity, it shows in detail how the usual semantics of 
dynamic logic can be seen as emerging from the account for certain inferential patterns of 
natural language, namely those governing anaphora. In this way, the current ‘dynamic turn’ of 
logic is argued to be reasonably seen not as the product of changing the focus of logic from 
the relation of entailment to „a structure of human cognitive action“ (van Benthem), but 
rather as merely another step in our long-term effort to master more and more inferential 
patterns. 
 
 
 
1. The dynamic turn of logic 
 
Classical logic may be seen as having given a faithful account of a certain core part of 
language. Some of the logics which go beyond its boundaries have then helped to account for 
other, more intricate parts. One of those elaborations which have proven to be especially 
interesting has been modal and intensional logic. The idea behind it is that we should let 
statements denote subsets of a set of indices rather than simply truth values. (Kripke called 
such indices possible worlds, but this term might be misleading, because it seemingly and 
unwarrantedly transposes Kripke’s originally purely logical achievement into the realm of 
metaphysics.) The fact is that the step from extensional to intensional logic made by Kripke 
and other semanticists of modal and intensional logic (notably Montague) can be seen as 
necessitated by the desire to master the modal aspect of language, primarily especially the 
particles necessary and possibly, usually regimented as  and ◊◊◊◊, respectively. (It has turned 
out that other grammatical constructions of natural language, like tenses, are of an essentially 
similar character too.) And the basic trick of the step, to say it once more, was the passage 
from seeing statements as names of truth values to seeing them as names of sets. 
 At present we are facing the effort to master another important aspect of language, 
which escapes even the modal and intensional conception of logic, the anaphoric aspect1. The 
target particles of this dynamic turn of logic appear to be pronouns and articles. It is now also 
quite clear what this turn amounts to in general2: we should stop seeing statements as names 
                                                 
*  I would like to thank Barbara Partee for valuable critical comments. A previous version of the text 
was presented at the 3rd conference in Information-Theoretic Approaches to Logic, Language and 
Computation (Hsitou, Taivan, June 1998). 
1 A formal account of anaphora has become an important problem for semanticists of natural 
language especially due to the pioneering work of Hans Kamp resulting in his DRT - see Kamp, 
1981, and Kamp & Reyle, 1993. Other approaches to anaphora are due to, e.g., Hintikka and Kulas, 
1985, or Heim, 1990; purely logical tools of such an account were presented by Greonendijk & 
Stokhof, 1991. 
2  See Muskens et al. (1987) or van Benthem (1997). 
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of sets and start to see them as names of certain transformations of ‘contexts’ or ‘information 
states’. Thus intensions are being replaced by context-change potentials; statements are no 
longer characterized by the possible worlds in which they are true, but rather by the way in 
which they alter the information states which constitute the contexts of their utterances. 
 What I think may still not be quite clear enough is the purely logical rationale of this 
step. The engagement of information states within logic is usually explained and justified by 
epistemological reasons: we need them, so the story goes, to do justice to how human subjects 
acquire their knowledge or use their language. (Van Benthem, 1997, p. ix, speaks about „the 
logical structure of cognitive actions, underlying human reasoning or natural language 
understanding“.) This seems to indicate that logic after the ‘dynamic turn’ is no longer logic 
in the good old sense of the word: that it is no longer about the inferential patterns governing 
our language, but now rather about the ways we exercise the patterns; no longer about truth 
but rather about the way we find out about truth. I think this can be treacherous (one of the 
basic points of Frege’s jump-start into the modern era of logic was the sharp distinction of 
matters of truth and consequence, which are independent of how anybody may come to know 
them, from matters of human subjects’ coming to recognize that something is true or that 
something is the consequence of something else); and therefore I think that we should seek a 
more conservative substantiation of the turn.  
 The situation is similar within semantics: there too the switch from ‘static’ notions of 
meaning to the notion of meaning as a context-change potential is normally explained in 
terms of the need to account for „how [meaning] affects the information available to 
illocutionary agents" (Chierchia, 1994, 141). This again indicates that the ‘dynamic turn’ 
alters the subject matter of semantics: while earlier semantics addressed what expressions 
meant (perhaps their truth conditions), now it is to address (also) how they change the 
context. The turn thus might seem to amount to simply a deliberate shift of the boundaries of 
semantics, which made it include also some parts of what has been previously considered a 
matter of, say, the theory of communication. Again, I think this may be misleading, for the 
engagement of context-change potentials need not be the result of moving the boundaries of 
semantics, but merely of paying due attention to some of those expressions and locutions of 
natural language which were ignored before (pronouns, articles, anaphoric locutions). Thus 
also here a more conservative substantiation might be in place. 
 What I mean by ‘a more conservative substantiation’ can be elucidated by 
volunteering a parallel between the dynamic turn with its information states and the 
intensional turn with its possible worlds. We can, of course, give various epistemological (or 
even psychological) reasons for the employment of intensional logic and possible worlds; but 
we can justify it also purely logically. The fact is that we need the operator  as governed by 
certain axioms for the purpose of capturing certain inferential patterns which  play an 
important role within our language and thereby within our reasoning. And another fact is that 
arguably the simplest and most perspicuous model theory for the relevant calculus treats 
statements as names of elements of the powerset of a fixed set and  as a designation of a 
mapping of the power-set on itself. From this vantage point, possible-worlds-semantics is the 
natural outcome of the effort to account for certain inferential patterns of our language. And 
what I want to do in this paper is to render the information-states-semantics (or the semantics 
of context-change potentials) as the natural outcome of the effort to account for other kind of 
inferential patterns; namely those involving anaphora. This is to say that what I want to do is 
to point out the basic inferential patterns characterizing ‘the logic of anaphora’ and show how 
they can be seen to yield the basic framework of dynamic semantics.  
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2. Anaphora from the Viewpoint of Inference 
 
As the paradigmatic cases of inferences involving anaphora we shall consider (1)-(4): 
 

John walks. He whistles. ⇒  John walks and whistles.    (1) 
Somebody walks. He whistles. ⇒  Somebody walks and whistles.   (2) 
A man walks and a woman runs. He whistles and she smiles. ⇒  

  A man walks and whistles. A woman runs and smiles.   (3) 
A man walks. The man whistles ⇒  A man walks and whistles   (4) 

 
When we consider the possibility of capturing these instances within the framework of a 
predicate-calculus-like logic, we probably come to the conclusion that at least the first three 
of them could be accommodated quite easily if we managed to extend the calculus by means 
of pronoun-like terms. Then they may acquire the form of (1’)-(3’).  
 

Wa(J) & Wh(he) ⇒  Wa(J) & Wh(J)       (1’) 
∃ xWa(x) & Wh(he) ⇒  ∃ x(Wa(x) & Wh(x))      (2’) 
∃ x(Ma(x) & Wa(x)) & ∃ x(Wo(x) & Ru(x)) & Wh(he) & Sm(she) ⇒  

  ∃ x(Ma(x) & Wa(x) & Wh(x)) & ∃ x(Wo(x) & Ru(x) & Sm(x))  (3’) 
 
The question now is how we could add terms of this kind to the predicate calculus. 
 
 
3. The Semantics of ‘Backwards-Looking’ 
 
Let us start from (1’). As the only types of expressions it contains aside of the problematic he 
are individual constants, unary predicate constants and conjunction, let us, for simplicity’s 
sake, start from a very simple language whose vocabulary is restricted just to these 
expressions. Hence the following language, which we shall call L. 
 Expressions of L fall into three categories: individual constants, unary predicate 
constants and connectives (the last category consisting of the single constant &). If p is a 
predicate constant and i is an individual constant, p(i) is a statement; and if s1 and s2 are 
statements, s1&s2 is a statement. The standard semantics of L is then as one would expect: If 
U is a set, then ║║ is an interpretation of L in U iff ║i║∈ U for every individual constant i, 
║p║⊆ U for every predicate constant p. The interpretation then extends to an assignment of 
truth values to statements in the natural way: for every individual constant i and every 
predicate constant p, ║p(i)║ = T iff ║i║∈ ║p║; and for every statements s1 and s2, ║s1&s2║ =  
T iff ║s1║ = T and ║s2║ = T. (The exact specifications of all the calculi discussed within the 
text can be found in the appendix.) 
 In order to be able to enrich L with a constant behaving like he in (1’), we shall 
consider an alternative semantics for L, which is as follows. Individual constants are taken to 
denote functions from U to U, each of them being assigned a constant function defined 
everywhere on U. The denotations of predicate constants are as before. This interpretation 
induces an assignment to statements of functions from U to U in the following way: If i is an 
individual constant and p is a predicate constant, then ║p(i)║ is a (partial) function from U to 
U such that for every x∈ U, ║p(i)║(x) is defined iff ║i║(x)∈ ║p║, and in this case ║p(i)║(x) 
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=║i║(x). (Thus, ║p(i)║ = {<x,y> | <x,y>∈ ║i║ and y∈ ║p║}; and as ║i║ is a constant function, 
║p(i)║ is either identical with ║i║, or is empty.) If s1 and s2 are statements, then ║s1&s2║ is 
such function that for every x∈ U, ║s1&s2║(x) = ║s2║(║s1║(x)); i.e. ║s1&s2║ = {<x,y> | there 
is a z such that <x,z>∈ ║s1║ and <z,y>∈ ║s2║}. A statement is true, by definition, if its 
denotation (which is a function) is defined everywhere on U; it is false if it is defined 
nowhere on U. 

It is easy to see that under any such alternative interpretation, every statement is either 
true or false. It is also easy to see that for each standard interpretation of L there exists an 
equivalent alternative interpretation and vice versa. (If ║║S is a standard interpretation, then 
the equivalent alternative interpretation ║║A is defined in the following way: ║i║A = {<x,y> | 
x∈ U and y = ║i║S} for every individual constant i and ║p║A = ║p║S for every predicate 
constant p. If, conversely, ║║A  is an alternative interpretation, then the corresponding ║║S is 
defined in such a way that ║i║S is the constant value of ║i║A.) 
 Now let us enrich L with a ‘backward-looking’ term ←←←← having the property that for 
every individual constant i and every predicate constant p1 and p2, p1(i)&p2(←←←←) is equivalent 
to p1(i)&p2(i). We can do this easily if we start from the just defined alternative semantics for 
L - for then the desired equivalence is secured by taking ║←←←←║ to be the identity function 
defined everywhere on U. To see that this works, let us consider the value of ║p1(i)&p2(←←←←)║ 
applied to an element x of the universe. If we denote the single value of the constant function 
║i║ as xi, then ║p1(i)&p2(←←←←)║(x) = ║p2(←←←←)║(║p1(i)║(x)), where ║p1(i)║ is either a constant 
function (if xi∈ ║p1║) or a function defined nowhere (otherwise), and ║p2(←←←←)║ is an identical 
function defined for those and only those x for which x∈ ║p2║. Thus, ║p2(←←←←)║(║p1(i)║(x)) is 
defined (and yields xi) iff xi∈ ║p1║ and xi∈ ║p2║, thus it is defined if and only if 
║p2(i)║(║p1(i)║(x)) is. Hence, ║p1(i)&p2(←←←←)║ is true (= defined for every x) if and only if 
║p1(i)&p2(i)║ is true (defined for every x). 
 Let us call this language L←. L← differs from L (considered with the alternative 
semantics) in that it contains formulas denoting functions which are defined for some 
elements of the universe and undefined for others, hence formulas which are, according to our 
definition of truth, neither true, nor false. This is the case of, for instance, any formula p(←←←←) 
with ║p║ being a nonempty, proper subset of U. If we realize that ←←←← should play the role of a 
pronoun, then this should not surprise us: if whistle(←←←←) is to render he whistles, then no 
wonder than it is, when uttered out of the blue, neither true, nor false. 
 
 
4. ‘Backward-Looking’ Terms and Indeterminacy 
 
In this way, we have developed a language which does justice to (1) (our ←←←← being the 
regimentation of (1)’s he); so let us proceed to (2). To be able to accommodate it, we need 
existential quantification; however, we shall not introduce it in the usual way. Let us return 
back to L and let us now consider another kind of alternative semantics for it. Individual 
constants will now be taken to denote subsets of the universe, each individual constant being 
assigned a singleton; and if i is an individual constant and p a predicate constant, then ║p(i)║ 
= T iff ║i║∩║p║ ≠ ∅ . Everything else is as in the standard case. That this alternative 
semantics is equivalent to the standard one is obvious. 
 Starting from this semantics, we can define the language Lε by adding to L the new 
term εεεε which is taken to denote the whole universe, ║εεεε║ = U. Then it is easy to see that p(εεεε) is 
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true if and only if there is something which is p, i.e. that what the statement claims is, in 
traditional notation, ∃∃∃∃ x.p(x).  
 This form of existential quantification is now suitable to interact with the backward-
looking term ←←←←. What we need to do is to combine Lε with L←; so what we first need is to 
merge the two alternative semantics of L which we have employed to produce L← and Lε, 
respectively. This can be done in a straightforward way: denotations of terms  (where terms 
are now individual constants, εεεε and ←←←←) will now be binary relations over U such that for 
every ordinary individual constant i, ║i║ = {<x,xi> | x∈ U} for some xi∈ U, ║εεεε║ = {<x,y> | 
x∈ U and y∈ U} and ║←←←←║ = {<x,x> | x∈ U}. The denotation of predicates remains unchanged 
(i.e. they keep denoting subsets of U). Also statements now denote binary relations over U, 
their denotations being defined in the following way: ║p(t)║ = {<x,y> | <x,y>∈ ║t║ and 
y∈ ║p║}; ║s1&s2║={<x,y> | there is a z such that <x,z>∈ ║s1║ and <z,y>∈ ║s2║}. A statement 
s is true iff for every x∈ U there exists a y∈ U such that <x,y>∈ ║s║; it is false iff for no x∈ U 
is there a y∈ U such that <x,y>∈ ║s║ (i.e. iff ║s║ = ∅ ).  
 It is now easy to see that within the resulting language Lε,← not only is p1(i)&p2(←←←←) 
equivalent to p1(i)&p2(i) for every individual constant i and every predicate constant p1  and 
p2, but p1(εεεε)&p2(←←←←) is true if and only if there is an x which is both p1 and p2. The proof of 
the former claim is straightforwardly analogous to the proof of the same claim within L←; so 
let us prove the latter one only. If s is a sentence of Lε,←, then we shall write x║s║y instead of 
<x,y>∈ ║s║. Then we can see that x║p1(εεεε)&p2(←←←←)║y iff there is a z such that x║p1(εεεε)║z and 
z║p2(←←←←)║y. Moreover, x║p1(εεεε)║z iff x║εεεε║z and z∈ ║p1║, i.e. iff z∈ ║p1║ (for x║εεεε║z holds for 
every x and z); and z║p2(←←←←)║y iff z = y and y∈ ║p2║. Hence x║p1(εεεε)&p2(←←←←)║y iff y∈ ║p1║ 
and y∈ ║p2║. This means that ║p1(εεεε)&p2(←←←←)║ is true iff there is a y such that y∈ ║p1║ and 
y∈ ║p2║ (for then x║p1(εεεε)&p2(←←←←)║y for every x∈ U). 
 The fact that statements of Lε,← denote relations between individuals of the universe 
invites a ‘dynamic’ reading: what a statement denotes can be seen as an (indeterministic) 
transition from an individual to an individual, as something that ‘consumes’ an individual 
(which is yielded by a previous statement - if any) and ‘produces’ a (possibly different) 
individual (which is then consumed by a subsequent statement - if any). We may see it also in 
terms of a ‘saliency box’ the content of which may be supplied by one statement and 
subsequently utilized by another one: the statement’s input is what is in the box when the 
statement is uttered (the box may be empty or filled by an individual), and its output is the 
content of the box as established by the utterance (the box may be unchanged, or (re)filled by 
a new individual). In such terms we can describe the semantics of Lε,← in an illuminating 
way: an ordinary constant always (re)fills the saliency box by a fixed individual; ←←←← leaves the 
contents of the box unchanged, and εεεε fills the box ‘indeterministically’ by an arbitrary 
individual. A subject-predicate statement then ‘works’ (and thereby is true) in a given context 
if the contents of the saliency box as produced by the subject of the statement (in that context) 
belongs to the subset of the universe which is denoted by the predicate of the statement. 
However, it is good to notice that this story is meant neither as a depiction of something 
going on within speakers’ heads, nor as a description of a structure of ‘cognitive actions’; it is 
a metaphorical way of envisaging a model theory for a language which we have found to do 
justice to inferences like (1) and (2). 
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5. Multiple ‘Backward-Looking’ Terms 
 
Now let us turn our attention to (3). What we need in this case is a plurality of different 
‘pronouns’ (‘backward-looking’ terms). To provide for it, let us modify Lε,← in the following 
way: let us divide the terms of the language into n disjoint sorts, so that every individual 
constant falls into one of the sorts, and εεεε and ←←←← are replaced by εεεεk and ←←←←k for every sort k. 
║║ is an interpretation of this language iff ║t║∈ UnxUn for every term t and ║p║⊆ U for every 
predicate constant p. Let us write [x]n instead of <x1,...,xn> and omit the subscript n where no 
confusion is likely to arise; and let us write [x]i for the i-th constituent of the sequence [x]. 
For every k, ║tk║ is some set of pairs of n-tuples <[x],[y]> such that for j≠k, [y]j=[x]j; if the tk 
is εεεεk then it is the set of all such pairs, if it is ←←←←k, then it is the set of all such pairs for which 
also [y]k =[x]k, and for an ordinary individual constant it is the set of all such pairs for which 
[y]k

 is a fixed element of the universe. In symbols, let ║εεεεk║ = {<[x],[y]> | [y]j=[x]j for j≠k}, 
║←←←←k║ = {<[x],[y]> | [y]=[x]}, and for every individual constant ik of the sort k let there exist 
an individual xik so that ║ik║ = {<[x],[y]> | [y]k= xik; [y]j=[x]j for j≠k}. 

Such an interpretation now induces an assignment of elements of UnxUn to statements 
in the following way: ║p(tk)║ = {<[x],[y]> | <[x],[y]>∈ ║tk║ and [y]k ∈ ║p║} if tk is a term of 
the sort k, and ║s1&s2║ = {<[x],[y]> | there is a [z] so that <[x],[z]>∈ ║s1║ and 
<[z],[y]>∈ ║s2║}. A sentence s is true iff for every [x]∈ Un, there is an [y]∈ Un so that 
<[x],[y]>∈ ║s║; it is false if for no [x]∈ Un there is an [y]∈ Un so that <[x],[y]>∈ ║s║ (i.e. iff 
║s║=∅ ).  
 Now let us show that p1(ik)&p2(←←←←k) is equivalent to p1(ik)&p2(ik) for every individual 
constant ik of the sort k (and every predicate p1 and p2). By definition, [x]║p1(ik)&p2(←←←←k)║[y] 
iff there is a [z] so that [x]║p1(ik)║[z] and [z]║p2(←←←←k)║[y]. Furthermore, [x]║p1(ik)║[z] iff 
[x]║ik║[z] and [z]k∈ ║p1║; and [z]║p2(←←←←k)║[y] iff [z]║←←←←k║[y], and [y]k∈ ║p2║. Hence 
[x]║p1(ik)&p2(←←←←k)║[y] iff [x]║ik║[z] and [z]k∈ ║p1║ and [z]║←←←←k║[y], and [y]k∈ ║p2║. But as 
[z]║←←←←k║[y] iff [z] = [y], this reduces to [y]k = xik and [y]j=[x]j for j≠k and xik∈ ║p1║ and 
xik∈ ║p2║, which is clearly also a necessary and sufficient condition for [x]║p1(ik)&p2(ik)║[y]. 
Thus, [x]║p1(ik)&p2(←←←←k)║[y] if and only if [x]║p1(ik)&p2(ik)║ [y]. 
 In contrast to this, let us show that p1(ik)&p2(←←←←r) is not equivalent to p1(ik)&p2(ik) for 
k≠r. By reasoning analogous to that of the previous paragraph, we see that 
[x]║p1(ik)&p2(←←←←r)║[y] iff [x]║ik║[y] and [y]k∈ ║p1║ and [y]r∈ ║p2║; and as [x]║ik║[y] implies 
[x]r

 = [y]r, this further reduces to [x]║ik║[y] and [y]k∈ ║p1║, and [x]r∈ ║p2║. Now let ║║ be 
such an interpretation that the constant value of ║ik║, xik, is a member of both ║p1║ and ║p2║, 
but ║p2║ ≠ U. Let us take an n-tuple of objects [x] so that [x]r∉ ║p2║. Then, as we have just 
seen, there is no [y] so that [x]║p1(ik)&p2(←←←←r)║[y]. However, at the same time it is obvious 
that there is an  [y] so that [x]║p1(ik)&p2(ik)║[y], namely the [y] defined as follows: [y]k = xik 
and [y]j = [x]j for j≠k. This means that p1(ik)&p2(←←←←r) and p1(ik)&p2(ik) are not equivalent. 
 Similarly we could show that p1(εεεεk)&p2(←←←←k) is true iff there is something which is 
both p1 and p2, whereas p1(εεεεk)&p2(←←←←r) may be true even if there is no such x (and may be 
false even if there is). 

It would be also possible to introduce constants which are of more sorts than one:  if 
║i║ = {<[x],[y]> | [y]k=[y]r=c; [y]j=[x]j for k≠j≠l}, then both p1(i)&p2(←←←←k) and p1(i)&p2(←←←←r) 
are equivalent to p1(i)&p2(i); but p1(i)&p2(←←←←s) is not equivalent to p1(i)&p2(i) for k≠s≠r. 
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Returning back to our inferential patterns, we can see that to do justice to (3) we need 
Lε,←,3 with the three sorts rendering natural language grammatical gender (masculina, 
feminina, neutra). The operators ←←←←1, ←←←←2, ←←←←3 would then correspond to ‘he’, ‘she’, ‘it’, 
respectively; and the operators εεεε1, εεεε2, εεεε3 would provide a more refined resource for which 
English only has the two particles ‘somebody’ and ‘something’. 
 In general, we can see the expressions of Lε,←,n in the following way. We have 
‘introducers’, which are either definite (ordinary individual constants) or indefinite (epsilons), 
and ‘pickers’ (backarrows). Introducers interact with pickers to yield the anaphoric structure 
of the discourse, but not just any introducer with  just anypicker; to interact with an 
introducer, the picker has to be ‘tuned to the same frequency’ as the introducer. The 
‘frequency’ to which a picker or an introducer is ‘tuned’ is its sort. We have a finite number 
of ‘frequencies’. 
 It is even more illuminating to see the situation again in terms of a saliency box, this 
time with n slots instead of just one, the slots corresponding to that which has been just 
envisaged as ‘frequencies’. The introducers of the sort k fill the k-th slot of the box; the 
pickers of the sort l pick up the contents of the l-th slot. 
 
 
6. Complex ‘Backward-Looking’ Terms 

 
So far, the only ‘introducers’ and ‘pickers’ were words (primitive constants). Thus we have 
developed a framework to account for the inferential patterns of the kind of (3); but what 
about those of the kind of (4)? Here we have to depart from the structure of the predicate 
calculus more substantially; but our previous investigations can give us a lead. 

It seems that besides the simple ones, in natural language we have also complex 
‘introducers’ and ‘pickers’: a man and the man underlying the inferential pattern (4) seem to 
be an example. Introducers like a man, a logician, or a killer, despite being all tuned to the 
general ‘masculine frequency’ (and thus being capable of interacting with he), seem to 
provide also a finer frequency key. They do not interact with the corresponding pickers, the 
man, the logician, or the killer, indiscriminately: A logician walks and the killer whistles does 
not in general say that there is somebody who walks and whistles3. We have to imagine an 
infinite number of frequencies and a mechanism which turns a general name into either an 
‘introducer’ or a ‘picker’. And indeed, this seems to be what we have in English and what 
underlies the inferential pattern (4): articles. Thus instead of employing the multiple εεεε’s and 
←←←←’s, we can use two constants, say a and the (to make them wear their function on their 
sleeves), constituting a new category of expressions applicable to predicates to form terms. 
 To see what semantics this new calculus, call it Lthe,a, should have, let us return to the 
image of the saliency box once more. So far, the box consisted of n slots, each of which was 
suited to contain the current salient item of the sort n. Thus, the slots of the box may be seen 
as labeled by integers up to n. Now what we obviously need is an infinity of slots; more 
precisely we need an individual for each semantically distinct predicate. This is to say that the 
slots of the box are now to be labeled by denotations of predicates, i.e. subsets of the 
universe; which means that statements of Lthe,a are to be seen as denoting relations between 
functions which assign elements of the universe to subsets of the universe. Realizing that it is 
plausible to work only with such functions which map a set always on an element of itself 

                                                 
3 Although this might be felt as a kind of a ‘conversational implicature’.  
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(‘the most salient p’ should, of course, be a p), we reach the framework of Peregrin & von 
Heusinger (1997). 
 To be more rigorous: the terms of Lthe,a  are individual constants plus complex terms 
formed by applying a and the to predicates. Let U be the universe and let CHFU denote the set 
of choice functions over U, i.e. the set of all functions C such that (i) the domain of C is 
included in Pow(U), (ii) the range of C is included in U, and (iii) C(s)∈ s for every s from the 
domain of C. The semantics of Lthe,a is as follows: each term and each statement is assigned a 
subset of CHFUxCHFU; each predicate is assigned a subset of U. The ‘value referred to by tk 
in the context c’, |tk|c, where the context is identified with a choice function, is defined in 
the following way: if tk is a(p) or the(p), then |tk|C = C(║p║), whereas if tk is an individual 
constant ik, then |tk|c = xik for some fixed xik∈ U (independently of C). If p is a predicate and 
t a term, then ║p(t)║={<C,C’> | <C,C’>∈ ║t║ and |t|C’∈ ║p║}. If  i is an individual 
constant,  then ║i║ = {<C,C> | C∈ CHFU}4; if  p is a predicate, then ║a(p)║ = {<C,C’> | 
C(s)= C’(s) for s ≠ ║p║ and C’(║p║) ∈ ║p║}; and ║the(p)║={<C,C> | C(║p║)∈ ║p║}. If we 
again stipulate that a statement s is true (false) iff for every (no) C∈ CHFU there exists a 
C’∈ CHFU so that <C,C’>∈ ║s║, then we can easily prove that p1(a(p))&p2(the(p)) is true if 
and only if there is an item which is p, p1 and p2; and hence the inferential pattern (4) is 
validated. 
 To prove it, let us compute the denotation of p1(a(p))&p2(the(p)). By definition, 
C║p1(a(p))&p2(the(p))║C’ iff there is a C’’ such that C║p1(a(p))║C’’ and 
C’’║p2(the(p))║C’.  But as C║p1(a(p))║C’’ iff C║a(p)║C’’ and C’’(║a(p)║)∈ ║p1║, while 
C’’║p2(the(p))║C’ iff C’’║the(p)║C’ and C’(║the(p)║)∈ ║p2║, it is obvious that 
C║p1(a(p))&p2(the(p))║C’ iff C║a(p)║C’’ and C’’(║a(p)║)∈ ║p1║ and C’’║the(p)║C’ and 
C’(║the(p)║)∈ ║p2║. And as C║a(p)║C’’ iff C(s)= C’(s) for s ≠ ║p║ and C’(║p║) ∈ ║p║, 
while C’’║the(p)║C’ iff C’’=C’ and C’’(║p║)∈ ║p║, this further reduces to C(s)= C’(s) for s 
≠ ║p║ and C’(║p║) ∈ ║p║ and C’(║a(p)║)∈ ║p1║ and C’║p║∈ ║p║ and 
C’(║the(p)║)∈ ║p2║, which means that C’ differs from C at most in the value it assigns to 
║p║ and this value is an element of ║p║, ║p1║ and ║p2║. Hence, given C, the existence of C’ 
for which C║p1(a(p))&p2(the(p))║C’ is tantamount to the existence of something which is p, 
p1 and p2. Q.e.d. 
 
 
7. De-simplification 
 
The formal languages we have discussed so far are, of course, so simple that they cannot be 
taken too seriously. The reason for employing such impoverished languages was to make the 
exposition of the basic logical backbone of the apparatus quite transparent; and now we are 
going to indicate how we could put flesh back on the bones. We shall talk about Lε,←, the 
cases of the more complex languages are straightforwardly analogous. 
 First, we have restricted ourselves to unary predicates. However, there is no problem 
of principle in accepting predicates of greater arities. In fact, there are at least two distinct 
ways to handle them. Informally speaking, these two ways differ in the order in which we 
compute the referents of terms of a two- or more-place predicate (which are to be tested 

                                                 
4 This means that individual constants are taken to trigger no anaphoric effects. This is, of course, a 
substantial oversimplification. For a more elaborate treatment see Peregrin & von Heusinger (1997). 
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against the denotation of the predicate): we may compute a term’s referent either immediately 
after the very term exercises its context-change potential, or else after every term does so. For 
Lε,←, we have the following two alternative rules: 
 

<x,y>∈ ║p(t1,...,tn)║ iff there are x0,...,xn so that x = x0, y = xn, <xj-1,xj>∈ ║tj║  
for j = 1,...,n, and <x1,...,xn>∈ ║p║ 

<x,y>∈ ║p(t1,...,tn)║ iff there are x1,...,xn so that y = xn, <x,xj>∈ ║tj║ for j = 1,...,n, and 
<x1,...,xn>∈ ║p║ 

 
Which of these options is more adequate from the viewpoint of the language’s capacity to 
adequately reconstruct real inferential patterns of natural language is a matter of careful 
linguistic analysis which will not be discussed here.  

Second: negation, implication and other usual logical operators. The accommodation 
of these operators within a dynamic logical framework cause problems discussed in detail in 
the literature. They are again mostly problems of having to choose between various 
alternatives. The most straightforward way to accommodate the operators within Lε,← seems 
to be (in analogy with what has been proposed by Greonendijk and Stokhof, 1991): 

 
║¬ s║ = {<x,x> | there is no y so that <x,y>∈ ║s║} 
║s1 →→→→ s2║ = {<x,x> | for every <x,y>∈ ║s1║ there is a z so that <y,z>∈ ║s2║} 

 
However, the most controversial feature of the approach proposed here is that the 

languages presented avoided ordinary quantification in favor of indefinite terms with 
existential import. The reason for this is that this is, I am convinced, the right way to make the 
structure of the languages close enough to that of natural language to be able to account for 
the inferential patterns involving anaphora. However, if we want to make the present model 
into more than a toy, we undoubtedly have to indicate how it could be enriched with 
something approaching the power of quantifiers of ordinary logic.  
 Lε,← obviously does not enable us even to spell out that there is something which is p1 
and p2. The formula p1(εεεε)&p2(εεεε) says that there is something which is p1 and something 
which is p2, not that there is necessarily something with both the properties. How could we do 
away with this restriction? Remember that we invented εεεε because this seemed to be more 
congenial to the way in which indeterminacy is articulated in natural language; so we should 
go on taking lessons from natural language. And if we do this, we can see that the fact that 
there is something which is both p1 and p2 should be articulated as (p1&p2)(εεεε). This would, of 
course, require us to enrich Lε,← with the possibility of forming complex predicates, which 
might seem to take us far beyond the boundaries of first-order predicate calculus. However, 
this is not true: as Quine (1996) points out, to do predicate logic in terms of what he calls 
predicate functors is a natural (albeit unusual) possibility5.   
 Now what about universal quantification? There are again several ways to introduce it 
into Lε,←. The first is to make it simply dual to the existential quantification, i.e. to introduce 
a universal term ππππ functioning in such a way that for every predicate p it holds that (where ∼  
is the predicate-functor of negation): 
 
                                                 
5 By this reformulation of the predicate calculus we effectively get rid of variables, which is a good 
way to make logic closer to natural language - as I argued elsewhere (see Peregrin, in press). 
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 p(ππππ) = ¬ (∼ p)(εεεε) 
 
(Note that one of the consequences of introducing predicate functors is that every statement 
can be articulated into a subject-predicate form, so the definition may be seen as entirely 
general.) This definition, however, of course depends on the way we decide to define 
negation. If we define ¬  in the most straightforward way shown above (and if ∼  is taken to 
denote simply the set-theoretical complement), it is easy to see that  
 

║¬ (∼ p)(εεεε)║ = {<x,x> | there is no y so that <x,y>∈ ║(∼ p)(εεεε)║} = 
  {<x,x> | there is no y so that <x,y>∈ ║εεεε║ and y∈ ║∼ p║ } = 
  {<x,x> | there is no y so that y∈ ║∼ p║ } = 
  {<x,x> | for every y, y∈ ║p║ } 

 
 Another possibility would be to accept the ordinary general quantification of predicate 
logic. This would amount to the (re)introduction of the whole machinery of variables and 
binding of predicate logic, and it would make our logic into ordinary logic with the dynamic 
machinery besides the ordinary, static one. (Of course we then could define classical 
existential quantification in terms of the universal one, and dynamic universal quantification 
in terms of the dynamic existential one; so we would have both full sets of quantifiers.) 
 A third possibility would be to have no explicit universal quantification at all and to 
analyze corresponding locutions of natural language in terms of dynamic implication. (In 
contrast to negation, implication as defined above is not merely a straightforward 
transposition of the material implication of static logic; and this is what makes it possible to 
use it for the purposes of analyzing universal statements). Thus we could analyze 
 
 Every human is mortal  
 
as 
 

human(εεεε) →→→→ mortal(←←←←) 
 
which may be read roughly as If something is human, then it is mortal. It is again easy to see 
that 
 

║human(εεεε) →→→→ mortal(←←←←)║ =  
{<x,x> | for every <x,y>∈ ║human(εεεε)║ there is a z so that <y,z>∈ ║ mortal(←←←←)║} = 
{<x,x> | for every <x,y> such that <x,y>∈ ║εεεε║ and y∈ ║human║ there is a z so that 

  <y,z>∈ ║←←←←║ and z∈ ║mortal║} = 
{<x,x> | for every <x,y> such that y∈ ║human║ there is a z so that y = z and 

z∈ ║mortal║} = 
{<x,x> | for every <x,y> such that y∈ ║human║ it holds that y∈ ║mortal║} = 
{<x,x> | for every y such that y∈ ║human║ it holds that y∈ ║mortal║} = 
{<x,x> | ║human║ ⊆ ║mortal║} 

 
This restriction to ‘unselective’ universal quantification is known, e.g., from DRT. 
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8. Concluding Remarks 
 
The basic trick which allows for the logical accommodation of anaphoric effects is taking 
sentences as denoting not sets of indices, but rather relations between sets of indices. The 
more fine-grained structure we then give to the indices, the richer repertoire of anaphoric 
effects we can have. Within Lε,←, we took the indices to be, in effect, simply individual 
elements of the universe, and thus we were able to have only one, ‘unselective’ ‘backward-
looking term’. Within Lε,←,n we improved on the situation by taking the indices to be n-tuples 
of elements of the universe: this allowed us to have n distinct, selective ‘backward-looking 
terms’. Within Lthe,a, the structure of the indices was still richer: they were taken to be choice 
functions; and as the consequence, we gained an infinite number of distinct backward-looking 
terms6. One can imagine also various further generalizations.  
 Now like in the case of introducing ‘modal indices’ (possible worlds), this 
introduction of ‘dynamic indices’ (underlying information states) can (and indeed, as I am 
convinced, should) be interpreted neither as a metaphysical, nor as a psychological, but rather 
as a purely logical achievement. We did not model any ‘storage facilities’ which we would 
find within human mind/brain; what we have done was to identify certain expressions with 
certain interesting inferential behavior within our language (he, she, a man, the woman, etc.), 
we have devised (rudimentary) logical systems in which it is possible to reflect the workings 
of such expressions (i.e. the inferential patterns governing their usage), and we have devised 
some simple model theories for these logics. 
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Appendix: the Calculi 
 
The language L 
 
Vocabulary:  
unary predicate constants (pc’s), individual constants (ic’s), & 
 
Grammar:   
if p is a pc and i an ic then p(i) is a statement (st) 
if s1 and s2 are st’s, then s1 & s2 is a st. 
 
Standard semantics: 
if i is an ic, then ║i║∈ U (where U is the universe)  
if p is a pc, then ║p║ ⊆ U 
if s is a st,  then ║s║ is a truth value; s is true iff ║s║ = T, it is false iff ║s║ = F 
║p(i)║ = T iff ║i║∈ ║p║ 
║s1 & s2║ = T iff ║s1║= T and ║s2║ = T 
 
Alternative semantics 1: 
if i is an ic, then ║i║ is a total constant function from U into U 
if p is a pc, then ║p║⊆ U 
if s is a st,  then ║s║ is a function from U into U; s is true iff ║s║ is total, it is false iff ║s║ is 

empty 
║p(i)║ = {<x,y> | <x,y>∈ ║i║ and y∈ ║p║} (thus: if the constant value of ║i║ is an element of 

║p║, then ║p(i)║ = ║i║, else ║p(i)║ = ∅ ) 
║s1 & s2║ = ║s2║(║s1║) 
 
Alternative semantics 2: 
if i is an ic, then ║i║⊆ U and ║i║ is a singleton 
if p is a pc, then ║p║⊆ U 
if s is a st,  then ║s║ is a truth value; s is true iff ║s║ = T, it is false iff ║s║ = F 
║p(i)║ = T iff ║p║∩║i║ ≠ ∅  
║s1 & s2║ = T iff ║s1║ = T and ║s2║ = T 
 
Alternative semantics 3: 
if i is an ic, then ║i║⊆ UxU, such that ║i║ = {<x,xi> | x∈ U} for some xi∈ U 
if p is a pc, then ║p║⊆ U 
if s is a st,  then ║s║⊆ UxU; s is true iff for every x∈ U there exists an y such that <x,y>∈ ║s║, 

it is false iff for no x∈ U there exists an y such that <x,y>∈ ║s║ 
║p(i)║ = {<x,y> | <x,y>∈ ║i║ and y∈ ║p║} 
║s1 & s2║ = {<x,y> | there is a z such that <x,z>∈ ║s1║ and <z,y> ∈ ║s2║} 
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The language Lεεεε,←←←← 
 
Vocabulary:  
pc’s; terms (t’s); & 
t’s are ic’s, ←←←←, εεεε  
 
Grammar:   
if p is a pc and t a t, then p(t) is a st 
if s1 and s2 are st’s, then s1 & s2 is a st 
 
Semantics: 
if t is a t, then ║t║⊆ UxU; ║εεεε║ = UxU, ║←←←←║ = {<x,x> | x∈ U}; for every ic i there exists a 

xi∈ U such that ║i║ = {<x,xi> | x∈ U} 
if p is a pc, then ║p║⊆ U 
if s is a st,  then ║s║⊆ UxU; s is true iff for every x∈ U there exists an y such that <x,y>∈ ║s║, 

it is false iff for no x∈ U there exists an y such that <x,y>∈ ║s║ 
║p(i)║ = {<x,y> | <x,y>∈ ║i║ and y∈ ║p║} 
║s1 & s2║ = {<x,y> | there is a z such that <x,z>∈ ║s1║ and <z,y> ∈ ║s2║} 
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The language Lεεεε,←←←←,n 
 
Vocabulary:  
pc’s; terms of category k (tk’s) for k=1,...,n; & 
tk’s are individual constants of category k (ick’s), ←←←←k, εεεεk 
 
Grammar:   
if p is a pc and t a t, then p(t) is a st 
if s1 and s2 are st’s, then s1 & s2 is a st 
 
Semantics: 
if t is a tk, then ║t║⊆ UnxUn; ║εεεεk║ = {<[x]n,[y]n,> | [y]n

j=[x]n
j for j≠k}, ║←←←←k║ = 

{<[x]n,[y]n,> | [y]n=[x]n}; for every ick i there exists an xi∈ U such that 
║i║={<[x]n,[y]n,> | [y]n

k=xi and [y]n
j=[x]n

j for j≠k} 
if p is a pc, then ║p║⊆ U 
if s is a st,  then ║s║⊆ UnxUn; s is true iff for every [x]n∈ Un there exists an [y]n such that 

<[x]n,[y]n>∈ ║s║, it is false iff for no [x]n∈ Un there exists an y such that 
<[x]n,[y]n>∈ ║s║ 

║p(tk)║ = {<[x]n,[y]n > | <[x]n,[y]n >∈ ║tk║ and [y]n
k ∈ ║p║}  

║s1 & s2║ ={<[x]n,[y]n > | there is a [z]n such that < [x]n,[z]n >∈ ║s1║ and < [z]n,[y]n > 
∈ ║s2║} 
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The language Lthe, a 
 
Vocabulary:  
pc’s; ic’s; a, the; & 
 
Grammar:   
ic is a t 
if p is a pc, then a(p) and the(p) are t’s 
if p is a pc and t a t, then p(t) is a st 
if s1 and s2 are st’s, then s1 & s2 is a st 
 
Semantics: 
Let CHFU = {C | C is a partial function from Pow(U) to U such that if s belongs to the domain 

of C, then C(s)∈ s}. 
if t is a t, then, ║t║⊆ CHFUxCHFU; for every ic i, ║i║= {<C,C> | C∈ CHFU} 
if t is a t and C∈ CHFU, then |t|C∈ U; for every ic i there exists a xi∈ U such that |i|C = xi for 

every C∈ CHFU 
if p is a pc, then ║p║⊆ U 
if s is a st,  then ║s║⊆ CHFUxCHFU; s is true iff for every C there exists a C’ such that 

<C,C’>∈ ║s║, it is false iff for no C there exists a C’ such that <C,C’>∈ ║s║ 
║a(p)║={<C,C’> | C(s) = C’(s) for every s ≠ ║p║ and C’(║p║) ∈ ║p║}  
║the(p)║={<C,C> | C(║p║) ∈ ║p║ } 
|a(p)|C =|the(p)|C  =  C(║p║)  
║p(t)║= {<C,C’> | <C,C’>∈ ║t║ and |t|C’∈ ║p║ } 
║s1 & s2║ = {<C,C’> | there is a C’’ such that <C,C’’>∈ ║s1║ and <C’’,C’>∈ ║s2║} 
 


